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FOREWORD TO THE ENGLISH EDITION

It is an unusual pleasure to present Professor Heisen-

berg’s Chicago lectures on “The Physical Principles of

the Quantum Theory” to a wider audience than could

attend them when they were originally delivered Pro-

fessor Heisenberg’s leading place in the development of

the new quantum mechanics is well recognized by those

who have been following its growth. It was in fact he who

first saw clearly that in the older forms of quantum theory

we were describing our spectra in terms of atomic mecha-

nisms regarding which we could gain no definite knowl-

edge, and who first found a way to interpret (or at least

describe) spectroscopic phenomena without assuming

the existence of such atomic mechanisms. Likewise, “the

uncertainty principle” has become a household phrase

throughout our universities, and it is especially fortunate

to have this opportunity of learning its significance from

one who is responsible for its formulation.

The power of the new quantum mechanics in giving us

a better understanding of events on an atomic scale is

becoming increasingly evident. The structure of the

helium atom, the existence of half-quantum numbers in

band spectra, the continuous spatial distribution of

photo-electrons, and the phenomenon of radioactive dis-

integration, to mention only a few examples, are achieve-

ments of the new theory which had baffled the old. While

the writing of this chapter of the history of physics is



PREFACE

placed on the complete equivalence of the corpuscular

and wave concepts, which is clearly reflected in the newer

formulations of the mathematical theory. This symmetry

of the book with respect to the words “particle” and

“wave” shows that nothing is gained by discussing funda-

mental problems (such as causality) in terms of one

rather than the other. I have also attempted to make the

distinction between waves in space-time and the Schro-

dinger waves in configuration space as cjear as possible.

On the whole the book contains nothing that is not to

be found in previous publications, particularly in the in-

vestigations of Bohr. The purpose of the book seems to

me to be fulfilled if it contributes somewhat to the dif-

fusion of that “Kopenhagener Geist der Quantentheorie,”

if I may so express myself, which has directed the entire

development of modern atomic physics.

My thanks are due in the first place to Drs. C. Eckart

and F. Hoyt, of the University of Chicago, who have

taken on themselves not only the labor of preparing

the English translation, but have also contributed essen-

tially to the improvement of the book by working over

several sections and giving me the benefit of their advice.

I am also indebted to Dr. G. Beck for reading proof of

the German edition and for valuable assistance in the

preparation of the manuscript.

Leipzig

March 3, 1930

W. Heisenberg
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CHAPTER I

INTRODUCTORY

§ I. THEORY AND EXPERIMENT

The experiments of physics and their results can be

described in the language of daily life. Thus if the physi-

cist did not demand a theory to explain his results and

could be content, say, with a description of the lines ap-

pearing on photographic plates, everything would be

simple and there would be no need of an epistemological

discussion. Difficulties arise only in the attempt to

classify and synthesize the results, to establish the rela-

tion of cause and effect between them—in short, to con-

struct a theory. This synthetic process has been applied

not only to the results of scientific experiment, but, in the

course of ages, also to the simplest experiences of daily

life, and in this way all concepts have been formed. In the

process, the solid ground of experimental proof has often

been forsaken, and generalizations have been accepted un-

critically, until finally contradictions between theory and

experiment have become apparent. In order to avoid

these contradictions, it seems necessary to demand that

no concept enter a theory which has not been experimen-

tally verified at least to the same degree of accuracy as the

experiments to be explained by the theory. Unfortunate-

ly it is quite impossible to fulfil this requirement, since

the commonest ideas and words would often be excluded.

To avoid these insurmountable difficulties it is found ad-
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visable to introduce a great wealth of concepts into a

physical theory, without attempting to justify them rigor-

ously, and then to allow experiment to decide at what

points a revision is necessary.

Thus it was characteristic of the special theory of rela-

tivity that the concepts “measuring rod” and “clock”

were subject to searching criticism in the light of experi-

ment; it appeared that these ordinary concepts involved

the tacit assumption that there exist (in principle, at

least) signals that are propagated with an infinite veloc-

ity. When it became evident that such signals were not to

be found in nature, the task of eliminating this tacit as-

sumption from all logical deductions was undertaken,

with the result that a consistent interpretation was found

for facts which had seemed irreconcilable. A much more

radical departure from the classical conception of the

world was brought about by the general theory of rela-

tivity, in which only the concept of coincidence in space-

time was accepted uncritically. According to this theory,

ordinary language (i.e., classical concepts) is applicable

only to the description of experiments in which both the

gravitational constant and the reciprocal of the velocity

of light may be regarded as negligibly small.

Although the theory of relativity makes the greatest of

demands on the ability for abstract thought, still it fulfils

the traditional requirements of science in so far as it per-

mits a division of the world into subject and object

(observer and observed) and hence a clear formulation of

the law of causality. This is the very point at which the

difficulties of the quantum theory begin. In atomic phys-

ics, the concepts “clock” and “measuring rod” need no
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immediate consideration, for there is a large field of phe-

nomena in which i/c is negligible. The concepts “space-

time coincidence” and “observation,” on the other hand,

do require a thorough revision. Particularly character-

istic of the discussions to follow is the interaction between

observer and object; in classical physical theories it has

always been assumed either that this interaction is negli-

gibly small, or else that its effect can be eliminated from

the result by calculations based on “control” experi-

ments. This assumption is not permissible in atomic

physics; the interaction between observer and object

causes uncontrollable and large changes in the system

being observed, because of the discontinuous changes

characteristic of atomic processes. The immediate conse-

quence of this circumstance is that in general every ex-

periment performed to determine some numerical quan-

tity renders the knowledge of others illusory, since the un-

controllable perturbation of the observed system alters

the values of previously determined quantities. If this

perturbation be followed in its quantitative details, it ap-

pears that in many cases it is impossible to obtain an

exact determination of the simultaneous values of two

variables, but rather that there is a lower limit to the

accuracy with which they can be known .

1

The starting-point of the critique of the relativity

theory was the postulate that there is no signal velocity

greater than that of light. In a similar manner, this lower

limit to the accuracy with which certain variables can be

known simultaneously may be postulated as a law of na-

ture (in the form of the so-called uncertainty relations)

1 W. Heisenberg, Zeitschnft fur Physik
, 43, 172, 1927.
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and made the starting-point of the critique which forms

the subject matter of the following pages. These uncer-

tainty relations give us that measure of freedom from the

limitations of classical concepts which is necessary for a

consistent description of atomic processes. The program

of the following considerations will therefore be : first, to

obtain a general survey of all concepts whose introduc-

tion is suggested by the atomic experiments; second, to

limit the range of application of these concepts; and

third, to show that the concepts thus limited, together

with the mathematical formulation of quantum theory,

form a self-consistent scheme.

§2. THE FUNDAMENTAL CONCEPTS OE

QUANTUM THEORY

The most important concepts of atomic physics can be

induced from the following experiments:

a) Wilson1 photographs .—The a- and /Trays emitted

by radioactive elements cause the condensation of minute

droplets when allowed to pass through supersaturated

water vapor. These drops are not distributed at random,

but are arranged along definite tracks which, in the case

of a-rays (Fig. i), are nearly straight lines, in the case of

/3-rays, are irregularly curved. The existence of the tracks

and their continuity show that the rays may appropri-

ately be regarded as streams of minute particles moving

at high speeds. As is well known, the mass and charge

of these particles may be determined from the deflection

of the rays by electric and magnetic fields.

1 Proceedings of the Royal Society

,

A, 85, 285, 1911; see also Jahrbuch

der Radioaktivitat
, 10, 34, 1913.



INTRODUCTORY 5

b) Difraction of matter waves (Davisson and Germerf

Thomson
,

2 Rupp2).—After the conception of /3-rays as

streams of particles had remained unchallenged for more

than fifteen years, another series of experiments was per-

Fig. i.—Tracks of a-particles in Wilson Chamber

formed which indicated that they could be diffracted and

were capable of interference as if they were waves. Typi-

cal of these experiments is that of G. P. Thomson, in

which a narrow beam of artificial /3-rays of moderate

1 Physical Review
, 30, 705, 1927; Proceedings of the National Academy

,

14,317,1928.

2 Proceedings of the Royal Society
,
A, 117, 600, 1928; A, 119, 651, 1928.

3 Annalen der Physik, 85, 981, 1928.
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energy is passed through a thin foil of matter. The foil is

composed of minute crystals oriented at random, but the

atoms in each crystal are regularly arranged. A photo-

graphic plate receiving the emergent rays exhibits rings

of blackening (Fig. 2), as though the rays were waves and

were diffracted by the minute crystals. From the diame-

Fig. 2.—Diffraction of electrons on passing through a thin foil of

matter.

ters of the rings and the structure of the crystals, the

length of these waves may be determined and is found to

be X=k/mv, where m is the mass and v the velocity of the

particles as determined by the above-mentioned experi-

ments. Similar experiments were performed by Davisson

and Germer, Kikuchi, 1 and Rupp.

c) The diffraction of X-rays .—The same dual interpre-

tation is necessary in the case of light and electromag-

netic radiation in general. After Newton’s objections to

1 Japanese Journal of Physics, 5, 83, 1928.
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the wave theory of light had been refuted and the phe-

nomena of interference explained by Fresnel, this theory

dominated all others for many years, until Einstein1

pointed out that the experiments of Lenard on the photo-

electric effect could only be explained by a corpuscular

theory. He postulated that the momentum of the hypo-

thetical particles was related to the wave-length of the

radiation by the formula p = h/\ (cf. § 2b). The necessity

for both interpretations is particularly clear in the case of

X-rays: If a homogeneous beam of X-rays is passed

through a crystalline mass, and the emergent rays re-

ceived on a photographic plate (Fig. 3), the result is much
like the result of G. P. Thomson’s experiment, and it may
be concluded that X-rays are a form of wave motion, with

a determinable wave-length.

d) The Compton-Simon2 experiment .—When a beam of

X-rays passes through supersaturated water vapor, it

is scattered by the molecules. Secondary products of

the scattering are the “recoil” electrons, which are ap-

parently particles of considerable energy, since they form

tracks of condensed droplets as do the jg-rays. These

tracks are not very long, however, and occur with random

direction. They apparently originate within the region

traversed by the primary X-ray beam. Other secondary

products of the scattering are the photoelectrons, which

again make themselves evident by longer tracks of con-

densed water droplets. Under suitable conditions these

tracks originate at points outside the primary X-ray

beam, but the two secondary products are not unrelated.

1 Annalender Physik, 17 , 145 , 1905 .
3 Physical Review

,
25 , 306 , 1925 .
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If it be assumed that the X-ray beam consists of a stream

of light-particles (photons) and that the scattering process

is the collision of a photon with one of the electrons of

the molecule, as a result of which the electron recoils in

the observed direction, Einstein’s postulate regarding the

Fig. 3.—Diffraction of X-rays by MgO powder

energy and momentum of the photons enables the direc-

tion of the photon after the collision to be calculated.

This photon then collides with a second molecule, and

gives up its remaining energy to an electron (the photo-

electron). This assumption has been quantitatively ver-

ified (Fig. 4).
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e) The collision experiments of Franck and Hertz .

1—
When a beam of slow electrons with homogeneous ve-

locity passes through a gas, the electronic current as func-

tion of the velocity changes discontinuously at certain

values of the velocity (energy). The analysis of these

experiments leads to the conclusion that the atoms in the

Fig. 4.—Photograph showing recoil electron and associated photo

electron liberated by X-rays. The upper photograph is retouched.

gas can only assume discrete energy values (Bohr’s

postulate). When. the energy of the atom is known, one

speaks of a “stationary state of the atom.” When the

kinetic energy of the electron is too small to change the

atom from its stationary state to a higher one, the elec-

tron makes only elastic collisions with the atoms, but

when the kinetic energy suffices for excitation some elec-

trons will transfer their energy to the atom, so the elec-

1 Verhandlungen der Deutschen Physikalische Gesellschaft, 15, 613, 1913.
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tronic current as a function of the velocity changes rapidly

in the critical region. The concept of stationary states,

which is suggested by these experiments, is the most di-

rect expression of the discontinuity in all atomic processes.

From these experiments it is seen that both matter and

radiation possess a remarkable duality of character, as

they sometimes exhibit the properties of waves, at other

times those of particles. Now it is obvious that a thing

cannot be a form of wave motion and composed of par-

ticles at the same time—the two concepts are too differ-

ent. It is true that it might be postulated that two sepa-

rate entities, one having all the properties of a particle,

and the other all the properties of wave motion, were

combined in some way to form “light .'

”

But such theories

are unable to bring about the intimate relation between

the two entities which seems required by the experimental

evidence. As a matter of fact, it is experimentally certain

only that light sometimes behaves as if it possessed some

of the attributes of a particle, but there is no experiment

which proves that it possesses all the properties of a

particle; similar statements hold for matter and wave mo-

tion. The solution of the difficulty is that the two mental

pictures which experiments lead us to form—the one of

particles, the other of waves—are both incomplete and

have only the validity of analogies which are accurate

only in limiting cases. It is a trite saying that “analogies

cannot be pushed too far,” yet they may be justifiably

used to describe things for which our language has no

words. Light and matter are both single entities, and the

apparent duality arises in the limitations of our language.
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It is not surprising that our language should be inca-

pable of describing the processes occurring within the

atoms, for, as has been remarked, it was invented to de-

scribe the experiences of daily life, and these consist only

of processes involving exceedingly large numbers of

atoms. Furthermore, it is very difficult to modify our

language so that it will be able to describe these atomic

processes, for words can only describe things of which we
can form mental pictures, and this ability, too, is a result

of daily experience. Fortunately, mathematics is not sub-

ject to this limitation, and it has been possible to invent

a mathematical scheme—the quantum theory—which

seems entirely adequate for the treatment of atomic proc-

esses; for visualization, however, we must content our-

selves with two incomplete analogies—the wave picture

and the corpuscular picture. The simultaneous applicabil-

ity of both pictures is thus a natural criterion to determine

how far each analogy may be “pushed’ ’ and forms an

obvious starting-point for the critique of the concepts

which have entered atomic theories in the course of their

development, for, obviously, uncritical deduction of con-

sequences from both will lead to contradictions. In this

way one obtains the limitations of the concept of a parti-

cle by considering the concept of a wave. As N. Bohr1

has shown, this is the basis of a very simple deriva-

tion of the uncertainty relations between co-ordinate and

momentum of a particle. In the same manner one may
derive the limitations of the concept of a wave by com-

parison with the concept of a particle.

It must be emphasized that this critique cannot be car-

1 Nature, 121
, 580 , 1928 ;

Naturwissenschaften, 16 , 245 ,
1928 .
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ried through entirely without using the mathematical

apparatus of the quantum theory, for the development of

the latter preceded the clarification of the physical prin-

ciples in the historic sequence. In order to avoid obscur-

ing the essential relationships by too much mathematics,

however, it has seemed advisable to relegate this formal-

ism to the Appendix. The exposition of mathematical

principles given there does not pretend to be complete,

but only to furnish the reader with those formulas which

are essential for the argument of the text. References to

this Appendix are given as A (16), etc.



CHAPTER II

CRITIQUE OF THE PHYSICAL CONCEPTS
OF THE CORPUSCULAR THEORY

OF MATTER

§ I. THE UNCERTAINTY RELATIONS

The concepts of velocity, energy, etc., have been de-

veloped from simple experiments with common objects,

in which the mechanical behavior of macroscopic bodies

can be described by the use of such words. These same

concepts have then been carried over to the electron,

since in certain fundamental experiments electrons show

a mechanical behavior like that of the objects of common
experience. Since it is known, however, that this similar-

ity exists only in a certain limited region of phenomena,

the applicability of the corpuscular theory must be limited

in a corresponding way. According to Bohr
,

1 this restric-

tion may be deduced from the principle that the processes

of atomic physics can be visualized equally well in terms

of waves or particles. Thus the statement that the posi-

tion2 of an electron is known to within a certain accuracy

Ax at the time t can be visualized by the picture of a wave

packet in the proper position with an approximate exten-

sion A#. By “wave packet” is meant a wavelike dis-

turbance whose amplitude is appreciably different from

*N. Bohr, Nature
,
121, 580, 1928.

3 The following considerations apply equally to any of the three space

co-ordinates of the electron, therefore only one is 'treated explicitly.

13
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zero only in a bounded region. This region is, in general,

in motion, and also changes its size and shape, i.e., the

disturbance spreads. The velocity of the electron cor-

responds to that of the wave packet, but this latter cannot

be exactly defined, because of the diffusion which takes

place. This indeterminateness is to be considered as an

essential characteristic of the electron, and not as evi-

dence of the inapplicability of the wave picture. Defining

momentum as px — Wx (where n= mass of electron, vx=

^-component of velocity), this uncertainty in the velocity

causes an uncertainty in px of amount Apx; from the

simplest laws of optics, together with the empirically

established law X = h/p, it can readily be shown that

AxApx >.h

.

(i)

Suppose the wave packet made up by superposition of

plane sinusoidal waves, all with wave-lengths near X0 .

Then, roughly speaking, n = Ax/\ crests or troughs fall

within the boundary of the packet. Outside the boundary

the component plane waves must cancel by interference;

this is possible if, and only if, the set of component waves

contains some for which at least n -\- 1 waves fall in the

critical range. This gives

Ax
X^AX

> ^+i

where AX is the approximate range of wave-lengths nec-

essary to represent the packet. Consequently

AxAX .

“xT""
1 * (2)
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On the other hand, the group velocity of the waves (i.e.,

the velocity of the packet) is by A (85)

(3 )

so that the spreading of the packet is characterized by

the range of velocities

By definition Apx = fiAvg and therefore by equation (2),

AxApx>h .

This uncertainty relation specifies the limits within

which the particle picture can be applied. Any use of the

words “position” and “velocity” with an accuracy exceed-

ing that given by equation (1) is just as meaningless as the

use of words whose sense is not defined. 1

The uncertainty relations can also be deduced without

explicit use of the wave picture, for they are readily ob-

tained from the mathematical scheme of quantum theory

1 In this connection one should particularly remember that the human
language permits the construction of sentences which do not involve any

consequences and which therefore have no content at all—in spite of the

fact that these sentences produce some kind of picture in our imagination;

e.g., the statement that besides our world there exists another world,

with which any connection is impossible in principle, does not lead to any

experimental consequence, but does produce a kind of picture in the mind.

Obviously such a statement can neither be proved nor disproved. One

should be especially careful in using the words “reality,” “actually,” etc.,

since these words very often lead to statements of the type just men-

tioned.
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and its physical interpretation,
1 Any knowledge of the

co-ordinate q of the electron can be expressed by a prob-

ability amplitude S(q), \S{q)\
2dq' being the probability

of finding the numerical value of the co-ordinate of the

electron between q' and q'+dq'. Let

IW (4)

be the average value of q. Then Aq defined by

my=2^q'-qy\S{q’)Vdq' (s)

can be called the uncertainty in the knowledge of the elec-

tron’s position. In an exactly analogous way \T(p')\
2dp'

gives the probability of finding the momentum of the

electron between p' and p'+dp'; again p and Ap may be

defined as

P=fp'\T(P') \W > (6)

(Apy=2f(p'-py\np')\>dp> . (7)

By equation A(x69), the probability amplitudes are

related by the equations

T(P')=jS(q')R(q’p’W ,

j
S(q')=fT(p')R*(q’p')dp' , J

where R(p'p') is the matrix of the transformation from a

Hilbert space in which q is a diagonal matrix to one in

which p is diagonal. From equation A(4i) we have

fp(qrm'Pldq"={R(q'p")p(p
>'p')dp"

,

1 Kennard, Zeitschrijtfur Physik, 44 , 326, 1927.
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and by equation A(42) this is equivalent to

A ^,*4'*') (9)

whose solution is

2Tci
, ,

R=ce~>
Pq

. (10)

Normalizing gives c the value i/V h. The values of Ap
}

A

q

are thus not independent. To simplify further calcu-

lations, we introduce the following abbreviations:

x= q'-q
, y=p'-p,

s(x)=S(q')e h Pi
, [ (11)

t(y) = T(p')e~^
W' p)

.

Then equations (5) and (7) become

(Aq)
2= 2fx2

1

s(x)
1

2dx
,

(AP)
2— 2fy*\t(y) \

2dj
,

while equations (8) become

(so)

(70)
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Combining (5a), (7a), and (8a), the expression for (Ap)
x

may be transformed, giving

r
s* 2iri

yH*(y)dy
j
s(x)e h *v

dx
,

2

=

V'hf'
yH*^dy

j
s^ e

-y-
hf‘^

)dy
h d \

2

*>»=•* *-

7o ^ 2iri

d2
s -T- xy

j*•

,*(*) f-i itv 1
dx*

r,|'
a
(4- |lW|,‘31iw- |s<')l

|i(*)l
a

, (13 )

as may be proved by rearranging the obvious relation

(A#
5(x)+

dx
-°’ (l3

Hence it follows from equation (12) that

x&py^i
4ir,

-

(A?)2
>

ApAq>-
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which was to be proved. The equality can be true in (14)

only when the left side of (13a) vanishes, i.e., when

_ x2

s(x) = ce 2 <a3 )2

}

or

(Q.'— q)2 2TI

S(q
f

) ~ce ^ ~

h
pa'

?

(i5)

where c is an arbitrary constant. Thus the Gaussian prob-

ability distribution causes the product ApAq to assume

its minimum value.

It must be emphasized again that this proof does not

differ at all in mathematical content from that given at

the beginning of this section on the basis of the duality be-

tween the wave and corpuscular pictures of atomic phe-

nomena. The first proof, if carried through precisely,

would also involve all the equations (4)-(i4). Physical-

ly, the last proof appears to be more general than the

former, which was proved on the assumption that x was

a cartesian co-ordinate and applies specifically only to

free electrons because of the relation \— h/ixvg which

enters into the proof. Equation (14), on the other hand,

applies to any pair of canonic conjugates p and q. This

greater generality of (14) is rather specious, however. As

Bohr1 has emphasized, if a measurement of its co-ordinate

is to be possible at all, the electron must be practically

free.

1 Loc. cit .
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§ 2. ILLUSTRATIONS OR THE UNCERTAINTY RELATIONS

The uncertainty principle refers to the degree of inde-

terminateness in the possible present knowledge of the

simultaneous values of various quantities with which the

quantum theory deals; it does not restrict, for example,

the exactness of a position measurement alone or a veloc-

ity measurement alone. Thus suppose that the velocity

of a free electron is precisely known, while the position is

completely unknown. Then the principle states that

every subsequent observation of the position will alter the

momentum by an unknown and undeterminable amount

such that after carrying out the experiment our knowl-

edge of the electronic motion is restricted by the uncer-

tainty relation. This may be expressed in concise and gen-

eral terms by saying that every experiment destroys some

of the knowledge of the system which was obtained by

previous experiments. This formulation makes it clear

that the uncertainty relation does not refer to the past;

if the velocity of the electron is at first known and the

position then exactly measured, the position for times

previous to the measurement may be calculated. Then

for these past times ApAq is smaller than the usual limit-

ing value, but this knowledge of the past is of a purely

speculative character, since it can never (because of the

unknown change in momentum caused by the position

measurement) be used as an initial condition in any calcu-

lation of the future progress of the electron and thus can-

not be subjected to experimental verification. It is a mat-

ter of personal belief whether such a calculation concern-

ing the past history of the electron can be ascribed any

physical reality or not.
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a) Determination of the position of a free particle .—As a

first example of the destruction of the knowledge of a

particle's momentum by an ap-

paratus determining its position,

we consider the use of a micro-

scope.
1 Let the particle be moving

at such a distance from the micro-

scope that the cone of rays scat-

tered from it through the objec-

tive has an angular opening e. If

X is the wave-length of the light

illuminating it, then the uncer-

tainty in the measurement of the

#-co-ordinate (see Fig. 5) according to the laws of optics

governing the resolving power of any instrument is:

sin e
* (16)

But, for any measurement to be possible at least one

photon must be scattered from the electron and pass

through the microscope to the eye of the observer. From

this photon the electron receives a Compton recoil of

order of magnitude h/\. The recoil cannot be exactly

known, since the direction of the scattered photon is un-

determined within the bundle of rays entering the micro-

scope. Thus there is an uncertainty of the recoil in the

^-direction of amount

Apx~^ sin e
, (17)

and it follows that for the motion after the experiment

ApxAx~h . (18)
1 N. Bohr, loc. cit.
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Objections may be raised to this consideration; the

indeterminateness of the recoil is due to the uncertain

path of the light quantum within the bundle of rays, and

we might seek to determine the path by making the

microscope movable and measuring the recoil it receives

from the light quantum. But this does not circumvent

the uncertainty relation, for it immediately raises the

question of the position of the microscope, and its position

and momentum will also be found to be subject to equa-

tion (18). The position of the microscope need not be con-

sidered if the electron and a fixed scale be simultaneously

observed through the moving microscope, and this seems

to afford an escape from the uncertainty principle. But an

observation then requires the simultaneous passage of at

least two light quanta through the microscope to the

observer—one from the electron and one from the scale

—

and a measurement of the recoil of the microscope is no

longer sufficient to determine the direction of the light

scattered by the electron. And so on ad infinitum.

One might also try to improve the accuracy by measur-

ing the maximum of the diffraction pattern produced by

the microscope. This is only possible when many photons

co-operate, and a calculation shows that the error in meas-

urement of x is reduced to Ax=\/Vm sin e when m pho-

tons produce the pattern. On the other hand, each photon

contributes to the unknown change in the electron’s mo-

mentum, the result being Apx—Vmh sin e/X (addition of

independent errors). The relation (18) is thus not avoided.

It is characteristic of the foregoing discussion that

simultaneous use is made of deductions from the corpuscu-

lar and wave theories of light, for, on the one hand, we

speak of resolving power, and, on the other hand, of
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photons and the recoils resulting from their collision with

the particle under consideration. This is avoided, in so

far as the theory of light is concerned, in the following

considerations.

If electrons are made to pass through a slit of width d

(Fig. 6), then their co-ordinates in the direction of this

width are known at the moment after having passed it

with the accuracy A%= d. If we assume the momentum
in this direction to have been zero before passing through

the slit (normal incidence), it

would appear that the uncer-

tainty relation is not fulfilled.

But the electron may also be

considered to be a plane de d ^oC

Broglie wave, and it is at once

apparent that diffraction phe-

nomena are necessarily pro-

duced by the slit. The emergent

beam has a finite angl e of diverg-

ence a, which is, by the simplest laws of optics,

Fig. 6

X
Sin a~

d ,
(19)

where X is the wave-length of the de Broglie waves. Thus

the momentum of the electron parallel to the screen is un-

certain, after passing through the slit, by an amount

sin a (20)

since h/\ is the momentum of the electron in the direction

of the beam. Then, since Ax = d,

AxAp^h .
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In this discussion we have avoided the dual character of

light, but have made extensive use of the two theories of

the electron.

As a last method of determining position we discuss the

well-known method of observing scintillations produced

by a-rays when they are received on a fluorescent screen

or of observing their tracks in a Wilson chamber. The

essential point of these methods is that the position of

the particle is indicated by the ionization of an atom; it is

obvious that the lower limit to the accuracy of such a

measurement is given by the linear dimension Aqs of the

atom, and also that the momentum of the impinging

particle is changed during the act of ionization. Since the

momentum of the electron ejected from the atom is

measurable, the uncertainty in the change of momentum
of the impinging particle is equal to the range Aps within

which the momentum of this electron varies while moving

in its un-ionized orbit. This variation in momentum is

again related to the size of the atom by the inequality

ApsAqs>h .

Later discussion will show, in fact, that quite generally1

ApsAqa~nh ,

where n is the quantum number of the stationary state

concerned (cf
. § 2c below) . Thus the uncertainty relation

also governs this type of position measurement; here the

dualism of treatment is relegated to the background, and

1 N Bohr, loc. tit.



CRITIQUE OF THE CORPUSCULAR THEORY 25

the uncertainty relation appears rather to be the result of

the Bohr quantum conditions determining the stationary

state, but naturally the quantum conditions are them-

selves manifestations of the duality.

b) Measurement of the velocity or momentum of a free

particle .—The simplest and most fundamental method of

measuring velocity depends on the determination of posi-

tion at two different times. If the time interval elapsing

between the position measurements is sufficiently large,

it is possible to determine the velocity before the second

was made with any desired accuracy, but it is the velocity

after this measurement which alone is of importance to

the physicist, and this cannot be determined with exact-

ness. The change in momentum which is necessarily pro-

duced by the last observation is subject to such an inde-

terminateness that the uncertainty relation is again ful-

filled, as has been shown in the last section.
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Another common method of determining the velocity

of charged particles makes use of the Doppler effect.

Figure 7 shows the experimental arrangement in its essen-

tials. The component, px,
of the electron’s momentum

may be supposed to be known with ideal exactness, its

#-co-ordinate therefore completely unknown. On the

other hand, the y-co-ordinate of the electron will be as-

sumed to have been accurately determined, and py cor-

respondingly unknown. The problem is therefore to de-

termine the velocity in the y-direction, and it is to be

shown that the knowledge of the y-co-ordinate is de-

stroyed by this measurement to the extent demanded by

the uncertainty relation. The light may be supposed in-

cident along the #-axis, and the scattered light observed

in the y7direction. (It is to be noted that the Doppler

effect vanishes, under these conditions, if the electron

moves along the straight line x—y = o.) The theory of the

Doppler effect is in this case identical with that of the

Compton effect, and it is only necessary to use the laws of

conservation of energy and momentum of the electron

and light quantum. Letting E denote the energy of the

electron, v the frequency of the incident light, and using

primes to distinguish the same quantity before and after

the collision, we have

kv+E=ho'+E' ,)

(21)
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whence

Kv-v’)=E'-E
,

~ [Pz Px Pul 1

~ ; Kpx— px)px+ (p'y~ Pv)py] ,

I

hv

lie

hv hv' 1
"

c
Pv >

* Pv)

(22)

Since it is assumed that px and v are known, the accuracy

of the determination of py is conditioned only by the ac-

curacy with which the frequency v' of the scattered light

is measured

:

AP
’ =^AV'. (23)

To determine v' with this accuracy, it is necessary to ob-

serve a train of waves of finite length, which in turn de-

mands a finite time:

As it is unknown whether the photon collided with the

electron at the beginning or at the end of this time inter-

val, it is also unknown whether the electron moved with

the velocity (i/ii)pv or (i/n)p'y during this time. The

uncertainty in the position of the electron which is pro-

duced by this cause is thus

1 /. hv
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whence
ApyAy^h .

A «third method of velocity measurement depends on

the deflection of charged particles by a magnetic field.

For this purpose a beam must be defined by a slit, whose

width will be designated by d. This ray then enters a

homogeneous magnetic field, whose direction is to be

taken perpendicular to the plane of Figure 8. The length

of that part of the ray which lies in the region of the field

may be a; after leaving this region, the ray traverses a

field-free region of length l and then passes through a

second slit also of width d
,
whose position determines the

angle of deflection a. The velocity of the particles in the

direction of the beam is to be determined from the equa-

tion

a ^ v
-He - TT
v c__aHe

flV IXVC
(24)

The corresponding errors in measurement are related by

^
aHe Av

lie v2

It may be supposed that the position of the particle in the

direction of the ray was initially known with great ac-
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curacy. This may be achieved, for example, by opening

the first slit only during a very brief interval. It will again

be shown that this knowledge is lost during the experi-

ment in such a manner that the relation ApAq^h is ful-

filled after the experiment. To begin with, the accuracy

with which the angle a can be determined is obviously

d/(l+a), but even this accuracy can only be attained if

the natural de Broglie scattering of the ray is less than

this. Therefore

whence

Aa>
l-{-CL

9
Aa>

d’

(A a) 2 > _X_
l~\~a

The uncertainty in the position of the particle in the ray

after the experiment is equal to the product of the time

required to pass through the field and reach the second

slit and the uncertainty in the velocity. Thus

l-\-a
A Ay ,* v

whence

AgAy^^“^ (Ay) 2
,

The terms in the parentheses are equal to v/a and A =

hj fjLVj whence

/xAgAy>— ,
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since equation (24) is valid only for small values of a.

For large angles of deflection, this derivation requires

radical modification. One must remember, among other

things, that the experiment as described here would not

distinguish between a= o and a = 2ir.

c) Bound electrons .—If it be required to deduce the un-

certainty relations for the position, q, and momentum, p,

of bound electrons, two problems must be clearly dis-

tinguished. The first assumes that the energy of the

system, i.e., its stationary state, is known, and then in-

quires what accuracy of knowledge of p and q is implied

in, or is compatible with, this knowledge of the energy.

The second, distinct problem disregards the possibility of

determining the energy of the system and merely inquires

what the greatest accuracy is with which p and q may

simultaneously be known. In this second case, the experi-

ments necessary for the measurement of p and q may

produce transitions from one stationary state to another;

in the first case, the methods of measurement must be so

chosen that transitions are not induced.

We consider the first problem in some detail, and as-

sume an atom in a given stationary state. As Bohr has

shown,1 the corpuscular theory then forces one to con-

clude that ApAq is in general greater than h. For it is

obvious that we are concerned with the variation of p and

q as the electron moves in its orbit, and it follows from

Jpdq=nh (25)

that
AqsApa~nh . (26)

This may most readily be comprehended from a diagram

of the orbit in phase space as given by classical mechanics

1 Ibid.
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(Fig. 9). The integral is nothing else than the area in-

closed by the orbit, and ApsAqs is obviously of the same

order of magnitude. The index s which accompanies these

uncertainties is to indicate that they are not the absolute

minima of these quanti-

ties, but are the special

values which are assumed

by them when the station-

ary state of the atom is

known simultaneously and

exactly. This uncertainty

is of practical importance,

for example, in the discus-

sion of the scintillation

method of counting a-par-

ticles (chap, ii, § 2a). In the classical theory, it would

seem strange to consider this as an essential uncertainty,

for further experiments could be made without disturbing

the orbit. The quantum theory, however, shows that a

knowledge of the energy is a “determinate case” (reiner

Fall), 1
i.e., a case which is represented in the mathe-

matical scheme by a definite wave packet (in configura-

tion space) which does not involve any undetermined con-

stants. This wave packet is the Schrodinger function of

the stationary state. If the calculation of pages 16-19 is

carried through for this packet, the value of ApsAqs is

found to be greater in proportion to the number of nodes

possessed by the characteristic function. If we consider a

function y in equation (12) which possesses n nodes, the

calculation would show that

ApsAq^nh .

1 The translators believe that the literal rendering of the German
phrase (“pure case”) does not at all convey the concept involved.
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To pass on to the second problem: The maximum ac-

curacy is obviously given by ApAq~h if all knowledge of

the stationary states be disregarded. Then the measure-

ments can be carried out by such violent agents that the

electron can be regarded as free (acted on only by negli-

gible forces). The momentum of the electron can most

readily be measured by suddenly rendering the interac-

tion of the electron with the nucleus and neighboring

electrons negligible. It will then execute a straight-line

motion and its momentum can be measured in the man-

ner already explained. The disturbance necessary for such

a measurement is therefore obviously of the same order

of magnitude as the binding energy of the electron.

The relation [eq. (6)] is of importance, as Bohr points

out, for the equivalence of classical and quantum mechan-

ics in the limit of large quantum numbers. This is seen

when the validity of the concept of an “orbit” is exam-

ined. As the highest accuracy attainable is ApAq~h, the

orbit must be the path of a probability packet whose

cross-section (!£(/) PIS'(?0

1

2

) is approximately h. Such a

packet can describe a well-defined, approximately closed

path only if the area inclosed by this path is much greater

than the cross-section of the wave packet. This, accord-

ing to equation (26), is possible only in the limit of large

quantum numbers; for small n, on the other hand, the

concept of an orbit loses all significance, in phase space

as well as in configuration space. It is thus seen to be

essential for this limiting equivalence of the two theories

that the factor n occurs on the right side of equation (26).

The inapplicability of the concept of an orbit in the

region of small quantum numbers can be made clear from
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direct physical considerations in the following manner:

The orbit is the temporal sequence of the points in space

at which the electron is observed As the dimensions of

the atom in its lowest state are of the order 10"8 cm, it

will be necessary to use light of wave-length not greater

than io~9 cm in order to carry out a position measurement

of sufficient accuracy for the purpose. A single photon of

such light is, however, sufficient to remove the electron

from the atom, because of the Compton recoil. Only a

single point of the hypothetical orbit is thus observable.

One can, however, repeat this single observation on a

large number of atoms, and thus obtain a probability dis-

tribution of the electron in the atom. According to Born,

this is given mathematically by (or, in the case of

several electrons, by the average of this expression taken

over the co-ordinates of the other electrons in the atom).

This is the physical significance of the statement that

is the probability of observing the electron at a given

point. This result is stranger than it seems at first glance.

As is well known, diminishes exponentially with increas-

ing distance from the nucleus; there is thus always a small

but finite probability of finding the electron at a great

distance from the center of the atom. The potential en-

ergy of the electrons is negative £t such a point, but very

small. The kinetic energy is always positive; so that the

total energy is therefore certainly greater than the energy

of the stationary state under consideration. This paradox

finds its resolution when the energy imparted to the elec-

tron by the photon used in making the position measure-

ment is taken into account. This energy is considerably

greater than the ionization energy of the electron, and
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thus suffices to prevent any violation of the law of conser-

vation of energy, as is readily calculated explicitly from

the theory of the Compton effect.

This paradox also serves as a warning against carrying

out the “statistical interpretation” of quantum mechanics

too schematically. Because of the exponential behavior

of the Schrodinger function at infinity, the electron will

sometimes be found as much as, say, i cm from the nu-

cleus. One might suppose that it would be possible to

verify the presence of the electron at such a point by the

use of red light. This red light would not produce any

appreciable Compton recoil and the foregoing paradox

would arise once more. As a matter of fact, the red light

will not permit such a measurement to be made; the atom

as a whole will react with the light according to the

formulas of dispersion theory, and the result will not yield

any information regarding the position of a given electron

in the atom. This may be made plausible if one remem-

bers that (according to the corpuscular theory) the elec-

tron will execute a number of rotations about the nucleus

during one period of the red light. The statistical predic-

tions of quantum theory are thus significant only when

combined with experiments which are actually capable of

observing the phenomena treated by the statistics. In

many cases it seems better not to speak of the probable

position of the electron, but to say that its size depends

upon the experiment being performed.

The orbital concept has a significance when applied to

highly excited states of the atom; therefore it must be

possible to carry out the determination of the position of

the electron with an uncertainty less than the dimension

of the atom. It does not follow any longer that the elec-
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tron will be removed from the atom by the Compton re-

coil, as may be seen from the following equations. It is

necessary that the wave-length of the light, X, be much
less than Aqs ,

or by equation (26),

h

X

The energy imparted to the electron by its recoil is ap-

proximately

h ^hy>(AP^\E |

X \x nfi n
(2 6a)

(E is the energy of the atom, ji, the mass of the electron);

for large values of n, this recoil energy is much less than

\E\, the ionization energy of the electron. On the other

hand, this energy will always be great compared to the

energy differences between neighboring stationary states

in this region of the spectrum, which is also, in general,

of the order \E\/n. As a matter of fact, from equation

(26a) it follows at once that

so that the frequency of the light used in making the

measurement is great compared to the frequency of the

electron in its orbit.

The Compton effect has as its consequence that the

electron is caused to jump from a state, say n= 1000, to

some other state for which n is, say, greater than 950 and

less than 1050. The particular orbit to which the electron

jumps remains essentially indeterminate because of the

considerations of chapter ii, § 1 b. The result of the position

measurement is therefore to be represented in the mathe-
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matical scheme by a probability packet in configuration

space, which is built up of characteristic functions of the

states between n = 950 and 1050. Its size is determined

by the exactitude of the position measurement. This

packet describes an orbit analogous to that of a corpuscle

of classical mechanics, but, in general, spreads and in-

creases in size with the time. The result of a future meas-

urement of position can therefore only be predicted statis-

tically. The mathematical representation of the physical

process changes discontinuously with each new measure-

ment; the observation singles out of a large number of

possibilities one of which is the one which has happened.

The wave packet which has spread out is replaced by a

smaller one which represents the result of this observa-

tion. As our knowledge of the system does change dis-

continuously at each observation its mathematical repre-

sentation must also change discontinuously; this is to be

found in classical statistical theories as well as in the

present theory.

The motion and spreading of probability packets has

been studied by various authors, 1 and therefore no mathe-

matical discussion of it need be given here. A simple con-

sideration of Ehrenfest’s2 may be mentioned, however.

Consider the motion of a single electron moving in a field

of force whose potential is V (q) . The wave function satis-

fies [cf. eq. A (80)]

87T
2
JX 27TI dt

(27)

x Kennard, loc. cit.; C. G. Darwin, Proceedings of the Royal Society
,

A, 1 17, 258, 1927.

* P. Ehrenfest, Zeitschriftfur Physik> 45* 455> I92 7*
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and the probable value of q is given by equation (4) with

\f/
= S; q is one of the rectangular co-ordinates x, y, z.

Then differentiating by t:

dT
’

on substituting the value of d\j//dt and dip*/dt from (27):

A=~ f q(~4'*V2'P+'pV 24'*)dr
;

4ttJ

integrating by parts:

This process may be repeated a second time to obtain

fxq. As the calculation is lengthy, but simple, we give

only the result:

n~q
= (2f,

If yp represents a wave packet whose spatial dimension

is small compared to the distance within which dV/dq

changes appreciably, this may be written

nq=-e
dV(q)

dq
(29)

This proves that, so long as the wave packet remains

small, its center will move according to the classical equa-

tions of motion of the electron.
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A remark concerning the rate of spreading of the wave

packet may not be out of place at this point. If the clas-

sical motion of the system is periodic, it may happen that

the size of the wave packet at first undergoes only periodic

changes. The number of revolutions which the packet

may perform before it spreads completely over the whole

region of the atom can be calculated qualitatively as

follows: If there were no spreading at all, it would be

possible to make a Fourier analysis of the probability

density into which only integral multiples of the funda-

mental frequency of the orbit enter. As a matter of fact,

however, the “overtones” of quantum theory are not

exactly integral multiples of this fundamental frequency.

The time in which the phase of the quantum theoretical

overtones is completely shifted from that of the classical

overtones will be qualitatively the same as the time re-

quired for the spreading of the wave packet. Let J be the

action variable of classical theory, then this time will be

and the number of revolutions performed in this time is

(30)

In the special case of the harmonic oscillator, N becomes

infinite—the wave packet remains small for all time. In

general, however, N will be of the order of magnitude of the

quantum number n.
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In relation to these considerations, one other idealized

experiment (due to Einstein) may be considered. We im-

agine a photon which is represented by a wave packet

built up out of Maxwell waves. 1 It will thus have a cer-

tain spatial extension and also a certain range of fre-

quency. By reflection at a semi-transparent mirror, it is

possible to decompose it into two parts, a reflected and a

transmitted packet. There is then a definite probability

for finding the photon either in one part or in the other

part of the divided wave packet. After a sufficient time

the two parts will be separated by any distance desired;

now if an experiment yields the result that the photon

is, say, in the reflected part of the packet, then the proba-

bility of finding the photon in the other part of the packet

immediately becomes zero. The experiment at the posi-

tion of the reflected packet thus exerts a kind of action

(reduction of the wave packet) at the distant point occu-

pied by the transmitted packet, and one sees that this

action is propagated with a velocity greater than that of

light. However, it is also obvious that this kind of action

can never be utilized for the transmission of signals so that

it is not in conflict with the postulates of the theory of

relativity.

d) Energy measurements .—The measurement of the

energy of a free electron is identical with the measurement

of its velocity, so that most of the possible methods have

already been treated. A method not yet discussed for

measuring the energy of free electrons is that in which

1 For a single photon the configuration space has only three dimen-

sions; the Schrodinger equation of a photon can thus be regarded as for-

mally identical with the Maxwell equations.
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they are caused to move against a retarding field. If the

electron passes through the field it is customary to assume

the result of classical theory, that its energy E is certainly

greater than the energy V corresponding to the highest

potential of the field, and if it is reflected, that its energy

is smaller than this critical value. Such a conclusion is

certainly incorrect in the quantum theory, and a brief

discussion of the method will therefore be given here. If

the width of the potential barrier is comparable to the de

Broglie wave-length, X, of the electron, a certain number

of electrons will penetrate it even though their energies

E are less than the critical value necessary on the classical

theory. This number decreases exponentially as the width

of the barrier and V-E increase. Conversely, when

E>V, a certain number will be reflected if the potential

changes appreciably in a distance X. In any practicable

experiment, these conditions are not realizable, and the

conclusions of the classical theory can be used without

£
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appreciable error. The

mathematical treatment

of the situation just

sketched is important,

however, and will there-

fore be illustrated in the

case of an abrupt discon-

tinuity in the potential

distribution. The Schro-

dinger equation for a single electron will be used
;
this is not

identical with the wave theory of matter, for this latter

would take the reaction of the wave on itself into account.

The potential distribution is shown in Figure io. For the
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incident t/'-wave in the region I (x<o), we then readily

obtain the expression

1p %= ae h
P

2=E
, p>o; (31a)

for the wave penetrating into the region II (#>0),

\J/ t= a'e
-(p'x—Et )

p' 2=E— V ; (31 b)

and for the reflected wave in I,

\pT=a"e
- {—'px—Et)

If p' is real, it is to be taken greater than zero; if it is im-

aginary, total reflection occurs and it is to be taken as

positive imaginary, since
\f/t

must remain finite as #->oo

.

At the discontinuity (# = o), \p must be continuous and

possess a continuous first derivative
;
hence

pi+ypr—Pt ]

r when x=o

dx dx dx M

a+a" — a!

p(a—aff)~a!pr
.

Solving these equations for a! and a":

-1 1

P+Pr

.
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The number of electrons that pass through a given

cross-section per unit time is given by the square of the

absolute magnitude of the wave amplitude multiplied by

the momentum provided it is real. Thus, when E>V, the

intensities of the incident, transmitted and reflected

waves are respectively proportional to

For imaginary values of p'

,

the wave pt does not represent

a current of electrons, but a stationary charge distribu-

tion, and It =o. As \a"\ = \a\ in this case, IT
= —/*. In

both cases

The relative probabilities for reflection and penetration

of the electron are, by (33) and (31),

It Ye-Ye-v
Ye+Ye-v

p'-.
Ie— v 2YE
J E Ye+Ye-v

(34)

These expressions are plotted as solid lines in Figure n;

the curves expected from the classical theory are the

dotted lines.

For the elucidation of the physical principles of the

quantum theory a consideration of the mesaurement of
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the energy of atoms is more important than that of free

electrons, and this will be given in greater detail than the

preceding. As the phase of the electronic motion is the

TRANSMITTED PROBABILITY

Fig. ii

variable which is canonically conjugate to the energy, it

follows from the uncertainty principle that this must be

completely unknown if the energy is precisely determined.

Since the phase of the electronic motion determines the

phase of the radiation emitted, it is this latter which is to

enter the physical discussion. It will be shown that any

experiment which separates atoms that are in the station-

ary state n from those in

m necessarily destroys any

pre-existing knowledge of

the phase of the radia-

tion corresponding to the

transition n^m.
Let S be a beam of at-

oms (Fig. 1 2) ,
of width d in

the ^-direction, which is sent through an inhomogeneous

field F (which is not necessarily a magnetic field, as in
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the experiment of Stem-Gerlach, but may be electric or

gravitational). The energy of the atoms in state m will

be designated by En; it will depend on the magnitude of

the field F at the center of gravity of the atom, so that

the deflecting force of the field in the ^-direction is d(Em

(F))/dx= (dEm/dF) (dF/dx) ,
and is different for atoms in

different states. If T be the time required by the atoms

to pass through the field, and p the momentum of the

atoms in the direction of the beam, the angular deflec-

tion of the atoms will be

dErnT

dx P

The original beam will thus be divided into several, each

containing only atoms in one state
;
the angular separation

a of the two beams containing atoms in states n and m,

respectively, will then be

'dEm

dx dx ) p

This angle must be greater than the natural scattering of

the atomic beams if the two kinds of atoms are to be

separated
;
hence

a
>X_A
~ d pd *

(35)

The Schrodinger function pn contains the periodic fac-

tor e
h ”

. As En is a function of F, the frequency and

phase of the wave are changed while passing through the

field. This change is indeterminate, to a certain extent,

since it is impossible to tell in what part of the beam the

atom is moving and F varies from point to point. The
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uncertainty, A<p, of the phase change of the radiation of

frequency (Em—En)/h during the time T is therefore

41 11
V dx dx

,

27ra .

From equation (35) it follows at once that

A<p>i . (36)

This means complete indeterminateness in the phases.

The calculation can be carried through more concretely

if it is restricted to apply only to magnetic fields. Neglect-

ing the electron spin, it is known that the atom processes

like a rigid body when under the influence of a magnetic

field H; the velocity of this precession is

2fJLC
J

and its axis coincides with the direction of the field. This

velocity is different for various atoms because of the

width of the beam and the inhomogeneity of the field.

This difference in the precession of different atoms tends

to destroy any phase relation which may initially be

present. For the uncertainty in o>, we readily obtain

ed dH
Aw =——

,

2\XC dx

and the angular separation of the two beams is

^ _e_ dH KT_
m

2/JLC BX 2TTp
’

as a must be greater than h/pd,

‘ TAw> 27T .
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All trace of the original phase has thus been destroyed by

the experiment. Some atoms will have executed one rota-

tion more than others, and all intermediate angles are

possible. This does not follow if the apparatus is inca-

pable of resolving the two beams, as then a may be less

than hjpi.

Bohr1 has shown that the foregoing consideration re-

solves one of the paradoxes introduced by the assumption

of stationary states. If a beam of atoms, all initially in the

normal state, be excited to fluorescence by illumination

with light of a resonance frequency, we are compelled to

assume that they will radiate coherently. That is, each

atom will scatter a spherical wave, whose phase is de-

termined by that of the incident plane wave at the atom.

The elementary spherical waves will then be so related

that their superposition results in a refracted plane wave.

From the observation of this wave it is impossible to de-

termine the quantum state of the emitter—or even its

atomic character. But if the beam leaves the illuminated

region and is analyzed by means of an inhomogeneous

field, only the beam of atoms in the excited state will be

luminous. This beam will contain relatively few atoms,

widely spaced compared to the probable length of the

train of waves emitted. Their radiation must therefore

be practically identical with that from independent point

sources. This action of the magnetic field was quite in-

comprehensible as long as the assumption was retained

that the resolving power of the apparatus could be in-

creased indefinitely by decreasing the width of the beam

of atoms.

1 Loc. ciL



CHAPTER III

CRITIQUE OF THE PHYSICAL CONCEPTS
OF THE WAVE THEORY

In the foregoing chapter the simplest concepts of the

wave theory, which are well established by experiment,

were assumed without question to be “correct .

55 They

were taken as the basis of a critique of the corpuscular

picture, and it appeared that this picture is only appli-

cable within certain limits, which were determined. The

wave theory, as well, is only applicable with certain

limitations, which will now be determined. Just as in the

case of particles the limitations of a wave representation

were not originally taken into account, so that historically

we first encounter attempts to develop three-dimensional

wave theories that could be readily visualized (Max-

well and de Broglie waves). For these theories the term

“classical wave theories
55

will be used; they are related to

the quantum theory of waves in the same way as classical

mechanics to quantum mechanics. The mathematical

scheme of the classical and quantum theories of waves

will be found in the Appendix. (The reader must be

warned against an unwarrantable confusion of classical

wave theory with the Schrodinger theory of waves in a

phase space.) After a critique of the wave concept has been

added to that of the particle concept all contradictions be-

tween the two disappear—provided only that due regard

is paid to the limits of applicability of the two pictures.

47
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§ I. THE UNCERTAINTY RELATIONS EOR WAVES

The concepts of wave amplitude, electric and magnetic

field strengths, energy density, etc., were originally de-

rived from primitive experiences of daily life, such as the

observation of water waves or the vibrations of elastic

bodies. These concepts are also widely applicable to light

and even, as we now know, to matter waves. But since

we also know that the concepts of the corpuscular theory

are applicable to radiation and matter, it follows that the

wave picture also has its limitations, which may be de-

rived from the particle representation. These will now be

considered, first for the case of radiation.

Before proceeding to the subject proper, however, we

must first discuss briefly what is meant by an exact knowl-

edge of a wave amplitude—for instance, that of an electric

or magnetic field strength. Such an exact knowledge of

the amplitude at every point of a region of space (in the

strict mathematical sense) is obviously an abstraction

that can never be realized. For every measurement can

yield only an average value of the amplitude in a very

small region of space and during a very short interval of

time. Although it is perhaps possible in principle to di-

minish these space and time intervals without limit by

refinement of the measuring instruments, nevertheless for

the physical discussion of the concepts of the wave theory

it is advantageous to introduce finite values for the space

and time intervals involved in the measurements and only

pass to the limit zero for these intervals at the end of the

calculations. This is, in fact, exactly the procedure

adopted in treating the mathematical theory of wave

fields (cf. A, § 9). It is possible that future developments
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of the quantum theory will show that the limit zero for

such intervals is an abstraction without physical mean-

ing; for the present, however, there seems no reason for

imposing any limitations.

For precision of thought we therefore assume that our

measurements always give average values over a very

small space region of volume 8v — (8l) 3
,
which depends on

the method of measurement. Since it is a question of the

measurement of the field strengths, light of wave-length

X much less than 81 will not be detected by the experi-

ment. The measurement gives, say, the values E and H
for the field strengths (averaged over 8v). If these values

E and H were exactly known there would be a contradic-

tion to the particle theory, since the energy and mo-

mentum of the small volume 8v are

E=Sv ± (E>+H>)
,

G =Sv^-
c
ExH, (37)

and the right-hand members could be made as small as

desired by taking 8v sufficiently small. This is incon-

sistent with the particle theory, according to which the

energy and momentum content of the small volume is

made up of discrete and finite amounts hv and hv/c,

respectively. For the highest frequency detectable hv <

(he/81) so that it is clear that the right-hand members

of equation (37) must be uncertain by just the magni-

tudes of these quanta (hv and hv/c) in order that there

be no contradiction to the particle theory. Accordingly

there must be uncertainty relations between the com-

ponents of E and H which give rise to an uncertainty in

the value of E of the order of magnitude he/81 and in G
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of the order of magnitude h/81 when E and G are calcu-

lated by equations (37). Let AE and AH be the uncer-

tainties in E and H; then the uncertainties in E and G are

AE~t- {2\E-AE\+2\H-AH\+(AEy+(AHy\ ,

07T

A<?,=— {K^xALr^l + KA^xPO^ + KAExA^U ,

4ttc

with cyclic permutation for the y- and 2-directions.

Since the most probable values of E and H may

possibly be zero the terms on the right which contain

only AE and AH must alone be sufficient to give the

necessary uncertainty to E and G. This is attained if

***»*m-w w
with cyclic permutation for the other components. These

uncertainty relations refer to a simultaneous knowledge of

Ex and Hy in the same volume element; in different

volume elements Ex and Hy can be known to any degree

of accuracy.

The relations (38), as in the case of the particle theory,

can also be derived directly from the exchange relations

for E and H (cf. A, §§ 9, 12). If a division of space into

finite cells of magnitude 8v is used, the integration with

respect to dv in the Lagrangian of A (97) becomes a sum

over all the cells dv. The momentum conjugate to i'J.r)

in the rth cell is then [cf. A(io4)]

dL
dip*{r)

8v = 8vTla (r) (39)
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and in place of A(m),

HaOO^O) -**(s)na (r) =SaA»
gv ,

(40)

where 5„ is now the usual 5-function,

(

I for r — s,

o for r^s .

In the limit 5?;->o (40) becomes A(m).
From (40) and A(i34) applied to the case of electric and

magnetic fields it follows that

E1(r)$a(s)— $a(s)Ez (r) = — 2hci8r$8ai ~ . (41)

When it is remembered that an uncertainty gives an

uncertainty of order of magnitude A$?k/8l for the field

strengths resulting from $k, it will be seen that (41) leads

immediately to the uncertainty relations (38).

Matter waves may be treated in an entirely similar

way. It must be noted, however, that no experiment can

ever measure the amplitude directly, as is evident from

the fact that the de Broglie waves are complex. If ex-

change relations for the wave amplitudes are derived

formally from those for and ^*, the result is, to

be sure, a physically reasonable one in the case of the

Bose-Einstein statistics. However, use of the experi-

mentally correct Fermi-Dirac statistics gives the mean-

ingless result that ^ and \p* cannot be exactly measured

simultaneously at different points of space. It is thus

highly satisfactory that there is no experiment which will

measure ^ at a given point at a given time. The mathe-

matical reason for this is that even for the interaction of
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radiation and matter the part of the Lagrangian referring

to matter contains only terms of the form \pip*. From the

considerations just given it can also be seen that the Bose-

Einstein statistics is a physical necessity for light-quanta

if one makes the apparently very natural assumption that

measurements of the electric and magnetic fields at differ-

ent points of space must be independent of each other.

§ 2. DISCUSSION 01- AN ACTUAL MEASUREMENT

OE the electromagnetic field

As in the case of the corpuscular picture, it must be

possible to trace the origin of the uncertainty in a meas-

urement of the electromagnetic field to its experimental

source. We therefore discuss an experiment which is

capable of simultaneously measuring Ex and H, in the

same element of volume 5v. This can be accomplished by

the observation of the deflection in the direction of x of

two beams of cathode rays which traverse the volume in

opposite directions along the y-axis (cf. Fig. 13). It may
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be assumed that the width of both beams in the z-direc-

tion is hi, i.e., the whole width of the volume element, but

their widths in the perpendicular direction must be less

than this, say d
,
so that they may traverse 8v without

mutual disturbance. If the distance between the two

rays is of order of magnitude hi, the small inhomogeneities

of the field in this direction are also averaged out; itwould

also be possible to vary the distance between them for

this purpose. This experimental arrangement will enable

the measurement of Ex andHs in hi provided only that the

fields are not too inhomogeneous; should this condition

not be fulfilled, the method is incapable of giving a defi-

nite result, for the field must not vary appreciably across

the width of the rays, or else these will become diffuse

and no simple method of determining the deflections is

then available.

The angular deflection, a, of the rays in the distance hi

is to be observed, and the field can be calculated from the

formulas

Because of the natural spreading of the matter rays, the

accuracy of the measurements is given by

AE >A Pv_

ed phi
7

AHz>
Jl Py

ed fj,8l py '

(42)

One essential factor remains to be considered, however.

Each of the two electrons which pass through 5v simul-

taneously modifies the field, and hence the path of the

other electron. The amount of this modification is uncer-

tain to some extent, since it is not known at which point
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in the cathode ray the electron is to be found. The uncer-

tainty as to the actual fields which arises from this fact is

thus

AEx
> edw3 ’

AHz
> ed py

(biy jxc
’ (43)

whence

AEXAHZ
> hew

which was to be shown. It is to be noted that the simul-

taneous consideration of both the corpuscular and wave

picture of the process taking place is again fundamental

If the corpuscular picture of the cathode rays had not

been invoked, and a continuous distribution of charge

assumed as the picture of the rays, then the uncertainty

(43) would have disappeared.



CHAPTER IV

THE STATISTICAL INTERPRETATION OF
QUANTUM THEORY

§ I. MATHEMATICAL CONSIDERATIONS

It is instructive to compare the mathematical appa-

ratus of quantum theory with that of the theory of rela-

tivity. In both cases there is an application of the theory

of linear algebras. One can therefore compare the mat-

rices of quantum theory with the symmetric tensors of

the special theory of relativity. The greatest difference is

the fact that the tensors of quantum

theory are in a space of infinitely

many dimensions, and that this

space is not real but imaginary. The
orthogonal transformations are re-

placed by the so-called “unitary”

transformations. In order to obtain

a picture of this space, we abstract

from such differences, fundamental

though they be. Then every quantum theoretical “quan-

tity” is characterized by a tensor whose principal direc-

tions may be drawn in this space (cf. Fig. 14). In order

to obtain a clear picture, one may recall the tensor of

the moments of inertia of a rigid body. The principal

directions are, in general, different for each quantity;

only matrices which commute with one another have

coincident principal directions. The exact knowledge of

Fig. 14

55
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the numerical value of any dynamical variable corre-

sponds to the determination of a definite direction in

this space, in the same manner as the exact knowledge

of the moment of inertia of a solid body determines

the principal direction to which this moment belongs

(it is assumed that there is no degeneracy). This di-

rection is thus parallel to the kth principal axis of the

tensor T
y
along which the component Tkk has the value

measured. The exact knowledge of the direction (except

for a factor of absolute magnitude unity) in unitary space

is the maximum information regarding the quantum dy-

namical variable which can be obtained. Weyl1 has called

this degree of knowledge a determinate case (reiner Fall).

An atom in a (non-degenerate) stationary state presents

such a determinate case: The direction characterizing it

is that of the kth principal axis of the tensor E, which be-

longs to the energy value Ekk . There is obviously no sig-

nificance to be attached to the terms “value of the co-

ordinate q” etc., in this direction, just as the specification

of the moment of inertia about an axis not coinciding with

one of the principal directions is insufficient to determine

any type of motion of the rigid body, no matter how
simple. Only tensors whose principal axes coincide with

those of E have a value in this direction. The total angu-

lar momentum of the atom, for example, can be deter-

mined simultaneously with its energy. If a measurement

of the value of q is to be made, then the exact knowledge

of the direction must be replaced by inexact information,

which can be considered as a “mixture” of the original

directions Ekk) each with a certain probability coefficient.

1 H. Weyl, Zeitschrift fur Physik
f 46, 1, 1927.
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For example, the indeterminate recoil of the electron

when its position is measured by a microscope converts

the determinate case Ekk into such a mixture (cf. chap,

ii, § 2a). This mixture must be of such a kind that it may
also be considered as a mixture of the principal directions

of q, though with other probability coefficients. The meas-

urement singles a particular value q' out of this as being

the actual result. It follows from this discussion that the

value of q' cannot be uniquely predicted from the result of

the experiment determining E, for a disturbance of the

system, which is necessarily indeterminate to a certain

degree, must occur between the two experiments in-

volved.

This disturbance is qualitatively determined, however,

as soon as one knows that the result is to be an exact value

of q . In this case, the probability of finding a value q'

after E has been measured is given by the square of the

cosine of the angle between the original direction Ek and

the direction q'. More exactly one should say by the

analogue to the cosine in the unitary space, which is

|

S (.Ek , q
f

) [
. This assumption is one of the formal postulates

of quantum theory and cannot be derived from any other

considerations. It follows from this axiom that the values

of two dynamical quantities are causally related if, and

only if, the tensors corresponding to them have parallel

principal axes. In all other cases there is no causal rela-

tionship. The statistical relation by means of probability

coefficients is determined by the disturbance of the system

produced by the measuring apparatus. Unless this dis-

turbance is produced, there is no significance to be given

the terms “value” or “probable value” of a variable in a
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given direction of unitary space which is not parallel to a

principal axis of the corresponding tensor. Thus one be-

comes entangled in contradictions if one speaks of the

probable position of the electron without considering the

experiment used to determine it (cf . the paradox of nega-

tive kinetic energy, chap, ii, § 2d). It must also be empha-

sized that the statistical character of the relation depends

on the fact that the influence of the measuring device is

treated in a different manner than the interaction of the

various parts of the system on one another. This last

interaction also causes changes in the direction of the

vector representing the system in the Hilbert space, but

these are completely determined. If one were to treat the

measuring device as a part of the system—which would

necessitate an extension of the Hilbert space—then the

changes considered above as indeterminate would appear

determinate. But no use could be made of this deter-

minateness unless our observation of the measuring de-

vice were free of indeterminateness. For these observa-

tions, however, the same considerations are valid as those

given above, and we should be forced, for example, to in-

clude our own eyes as part of the system, and so on. The

chain of cause and effect could be quantitatively verified

only if the whole universe were considered as a single

system—but then physics has vanished, and only a

mathematical scheme remains. The partition of the world

into observing and observed system prevents a sharp

formulation of the law of cause and effect. (The observ-

ing system need not always be a human being; it may also

be an inanimate apparatus, such as a photographic plate.)

As examples of cases in which causal relations do exist
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the following may be mentioned: The conservation

theorems for energy and momentum are contained in the

quantum theory, for the energies and momenta of differ-

ent parts of the same system are commutative quantities.

Furthermore, the principal axes of q at time t are only

infinitesimally different from the principal axes of q at

time t+dt. Hence, if two position measurements are car-

ried out in rapid succession, it is practically certain that

the electron will be in almost the same place both times.

§ 2. INTERFERENCE OF PROBABILITIES

Many paradoxical conclusions may be deduced from

the foregoing principles if the perturbation introduced by

measuring instruments is not adequately considered. The

following idealized experiment furnishes a typical example

of such a paradox.

A beam of atoms, all of which are initially in the state

n
,
is directed through a field F t (Fig. 15). This field will

W v
Fig. 15

cause transitions to other states if it is inhomogeneous in

the direction of the beam, but will not separate atoms of

one state from those in another. Let Sf

nm be the transfor-

mation function for the transitions in the field F z so that

\S
f

nm \

2
is the probability of finding an atom in the state m

after it has emerged from the field F x . Farther on the

atoms encounter a second field F 2 ,
similar in properties

to F x for which the corresponding transformation func-
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tion is S'Ja. This field is again incapable of separating the

atoms in different states, but beyond F2 a determination

of the stationary state is made by means of a third field

of force. Now, for those atoms that are in the state m
after passing through Fz the probability of a transition to

state l on passing F2 is given by \Smi\

2
. Hence the prob-

able fraction of the atoms in the state l beyond F2 should

be given by

2|S4m|’|W. (44)

On the other hand, according to equation A(69), the

transformation function for the combined fields F x and F 2

is Sni' = '^S'nmS'mh which results in the value

m

IOT= ^ ^
SnmSml (45)

for the same probability as represented by equation (44)

.

The contradiction disappears when it is remarked that

the formulas (44) and (45) really refer to two different

experiments. The reasoning leading to (44) is correct only

when an experiment permitting the determination of the

stationary state of the atom is performed between F t and

F2 . The performance of such an experiment will nec-

essarily alter the phase of the de Broglie wave of the atom

in state m by an unknown amount of order of magnitude

one, as has been shown in chapter ii, § 2d. In applying

(45) to this experiment each member S^SZi in the sum-

mation must thus be multiplied by the arbitrary factor

exp(i<pm) and then averaged over all values of <pm . This
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1

phase average agrees with (44), which thus applies to this

experiment. The rules of the calculus of probabilities

can be applied to
|

5nm
|

2 only when the causal chain has

actually been broken by an observation in the manner

explained in the foregoing section. If no break of this

sort has occurred it is not reasonable to speak of the atom

as having been in a stationary state between F x and F2 ,

and the rules of quantum mechanics apply.

Three general cases may be illustrated by this experi-

ment, and they must be carefully distinguished in any

application of the general principles. They are:

Case I: The atoms remain undisturbed between F z

and Fa . The probability of observing the state l beyond

F2 is then

^ ^
SnmSml

m

Case II: The atoms are disturbed between F x and F2

by the performance of an experiment which would have

made possible the determination of the stationary state.

The result of the experiment is not observed, however.

The probability of the state l is then

m

Case III: The additional experiment of Case II is per-

formed and its result is observed. The atom is known to

have been in state m while passing from F x to F2 . The

probability of the state l is then given by

\S'M 2
-
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The difference between Cases II and III is recognized

in all treatments of the theory of probability, but the

difference between I and II does not exist in classical

theories which assume the possibility of observation with-

out perturbation. When stated in a sufficiently general-

ized form, this distinction is the center of the whole quan-

tum theory.

§ 3. bohr’s concept of complementarity1

With the advent of Einstein’s relativity theory it was

necessary for the first time to recognize that the physical

world differed from the ideal world conceived in terms of

everyday experience. It became apparent that ordinary

concepts could only be applied to processes in which the

velocity of light could be regarded as practically infinite.

The experimental material resulting from modern refine-

ments in experimental technique necessitated the revision

of old ideas and the acquirement of new ones, but as the

mind is always slow to adjust itself to an extended range

of experience and concepts, the relativity theory seemed

at first repellantly abstract. None the less, the simplicity

of its solution for a vexatious problem has gained it uni-

versal acceptance. As is clear from what has been said,

the resolution of the paradoxes of atomic physics can be

accomplished only by further renunciation of old and

cherished ideas. Most important of these is the idea that

natural phenomena obey exact laws—the principle of

causality. In fact, our ordinary description of nature, and

the idea of exact laws, rests on the assumption that it is

1 Nature, 121, 580, 1928.
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possible to observe the phenomena without appreciably

influencing them. To co-ordinate a definite cause to a

definite effect has sense only when both can be observed

without introducing a foreign element disturbing their

interrelation The law of causality, because of its very

nature, can only be defined for isolated systems, and in

atomic physics even approximately isolated systems can-

not be observed. This might have been foreseen, for in

atomic physics we are dealing with entities that are (so far

as we know) ultimate and indivisible. There exist no in-

finitesimals by the aid of which an observation might be

made without appreciable perturbation.

Second among the requirements traditionally imposed

on a physical theory is that it must explain all phenomena

as relations between objects existing in space and time.

This requirement has suffered gradual relaxation in the

course of the development of physics. Thus Faraday and

Maxwell explained electromagnetic phenomena as the

stresses and strains of an ether, but with the advent of the

relativity theory, this ether was dematerialized; the elec-

tromagnetic field could still be represented as a set of

vectors in space-time, however. Thermodynamics is an

even better example of a theory whose variables cannot

be given a simple geometric interpretation. Now, as a

geometric or kinematic description of a process implies

observation, it follows that such a description of atomic

processes necessarily precludes the exact validity of thelaw

of causality—and conversely. Bohr1 has pointed out that

it is therefore impossible to demand that both require-

1 Ibid
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ments be fulfilled by the quantum theory. They represent

complementary and mutually exclusive aspects of atomic

phenomena This situation is clearly reflected in the theory

which has been developed. There exists a body of exact

mathematical laws, but these cannot be interpreted as

expressing simple relationships between objects existing

in space and time. The observable predictions of this

theory can be approximately described in such terms, but

not uniquely—the wave and the corpuscular pictures both

possess the same approximate validity. This indetermi-

nateness of the picture of the process is a direct result of

the interdeterminateness of the concept “observation”—

it is not possible to decide, other than arbitrarily, what

objects are to be considered as part of the observed system

and what as part of the observer’s apparatus. In the for-

mulas of the theory this arbitrariness often makes it pos-

sible to use quite different analytical methods for the

treatment of a single physical experiment. Some examples

of this will be given later. Even when this arbitrariness

is taken into account the concept “observation” belongs,

strictly speaking, to the class of ideas borrowed from the

experiences of everyday life.
1 It can only be carried over

to atomic phenomena when due regard is paid to the limi-

tations placed on all space-time descriptions by the un-

certainty principle.

The general relationships discussed here may be sum-

marized in the following3 diagrammatic form:

1 It need scarcely be remarked that the term “observation
15

as here

used does not refer to the observation of lines on photographic plates,

etc., but rather to the observation of “the electrons in a single atom
,

55

etc. Cf. p. i.

3 N. Bohr, loc. cit.



STATISTICAL INTERPRETATION 65

CLASSICAL THEORY
Causal Relationships of Phenomena Described

in Terms of Space and Time

QUANTUM THEORY
Either Or

"Causal relationship

expressed by mathe-

matical laws

But

Physical description of

phenomena in space-

time impossible

It is only after attempting to fit this fundamental com-

plementarity of space-time description and causality into

one’s conceptual scheme that one is in a position to judge

the degree of consistency of the methods of quantum

theory (particularly of the transformation theory). To
mold our thoughts and language to agree with the ob-

served facts of atomic physics is a very difficult task, as

it was in the case of the relativity theory. In the case of

the latter, it proved advantageous to return to the older

philosophical discussions of the problems of space and

time. In the same way it is now profitable to review the

fundamental discussions, so important for epistemology,

of the difficulty of separating the subjective and objective

aspects of the world. Many of the abstractions that are

characteristic of modern theoretical physics are to be

found discussed in the philosophy of past centuries. At

that time these abstractions could be disregarded as mere

mental exercises by those scientists whose only concern

was with reality, but today we are compelled by the re-

finements of experimental art to consider them seriously.

Phenomena described 1

in terms of space and

time

But

Uncertainty principle

VI K.

cu jr*

.6 -a *3

ts £ .a
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CHAPTER V

DISCUSSION OF IMPORTANT EXPERIMENTS

In the preceding chapters the principles of the quantum

theory have all been discussed, but a real understanding

of them is obtainable only through their relation to the

body of experimental facts which the theory must ex-

plain This is particularly true of the general principle of

complementarity. A discussion of further experiments of

a less idealized type than those previously used to illus-

trate the separate principles is therefore necessary at this

point.

§ I. THE C. T. R. WILSON EXPERIMENTS

The essential features of the C. T. R. Wilson photo-

graphs may be most easily explained with the help of the

classical corpuscular picture. This explanation is also

completely justified from the standpoint of the quantum

theory. The uncertainty relations are not essential to the

explanation of the primary fact of the rectilinearity of the

tracks of a-particles. It is always correct to apply the

classical theory to such semi-macroscopic phenomena,

and the quantum theory is necessary only for the explana-

tion of the finer features.

Nevertheless it will be profitable to discuss the quan-

tum theory of the Wilson photograph. We encounter at

once the arbitrariness in the concept of observation al-

ready mentioned, and it appears purely as a matter of

expediency whether the molecules to be ionized are re-

66
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garded as belonging to the observed system or to the

observing apparatus. Consider first the latter alternative.

The system to be observed then consists of one a-particle

only, and the position measurement resulting from the

ionization will be represented in the mathematical scheme

of the theory by a probability packet \p(q')\
z

*n the co-

ordinate space q
— x, y ,

z, of the a-particle. The calcula-

tion will be carried out only for one of the three degrees

of freedom.

If the time of this determination be taken as / = o, and

if a previous determination at a known time is also avail-

able, the momentum of the particle at time t~o may be

determined: let p and q denote the most probable values

of the momentum and co-ordinate at this time, and Ap
,

Aq the probable errors. The value of the uncertainty

product will be considerably greater than h in any actual

case, but we may assume that ApAq — h/

2

t (cf. the re-

marks concerning scintillation measurements, chap, ii,

§ 2a). This is a determinate case; it is then known [eq.

(15)] that

y[,(q£)
= e-Uo-y)V2(Aqy-

21

£ j>(«"-*)
.

(The index o indicates that q'0 is the value of the co-

ordinate at t= o.) The quantum theoretical equations of

motion are then

p— pQ
=z Const.,
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*

Although p and q do not commute, the latter equation

may nevertheless be integrated 1 to

pt+qo .

To obtain the probability amplitude p(q') at time i the

transformation function must be calculated from A(4i)

and A(42):

t d

jjl 27ri dq\
7+i'o) S(q'0q') = q'S(q'0q') .

0 l

The solution of this equation is

S(qtf) = ae

r
» iq

'
q° */%)

; (46)

by A(6q) the distribution at time t is then to be found

from
-+00mh: 'l'W<,)S{q'0q')dq

,

0 ,

which becomes, on evaluation of the integral,

f (?') = Je[5+*(«'-?«//0]VWA«)
a(i+*/«]

?

where

h t 1 _ t

P
~2ir n(Aqy~ P nAq

’

It follows that

I
yp{q') = _

(47)

(48)

1 Kennard, Zeitschrift fur Physik, 44, 326, 1927.
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The most probable value for q' is thus (t/v)p+q, which

is the result to be expected on the classical theory. The
mean square error (Aq) 2+ (tAp//x)

2 for q' is made up of

two terms corresponding to the uncertainties in q'
0 and p'

0;

its value again agrees with that which would be calculated

classically.

If these methods are applied to all three degrees of

freedom, x, y, z, it is seen at once that the path of the

center of the probability packet is a straight line. It is to

be noted, however, that this result applies only while the

a-particle is undisturbed in its motion. Each successive

ionization of a water molecule transforms the packet (48)

into an aggregate of such packets (Case II, p. 61). If the

ionization is accompanied by an observation of the posi-

tion, a smaller probability packet of the same form as (48)

but with new parameters is separated out of the aggre-

gate (Case III, p. 61). This forms the starting-point of a

new orbit—and so on. The angular deviations between

successive orbital segments are determined by the relative

momenta of the particle and the atomic electron with

which it interacts, which accounts for the differences be-

tween the paths of a- and /3-particles.

As regards the formal aspect of the foregoing calcula-

tions, it may be noted that the transformation from q'
0 to

q' can also be carried out by way of the energy. By equa-

tion A(7o) :

S{q'q')=fS(q'0E)S(Eq')dE ,

and therefore

Mf)=fsmdEfK&SWQd<fo
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The functions S(q'E), S(Eq'0) are the normalized Schro-

dinger wave functions for the free electron; the function

if/(q
f

) can thus be built up by superposition of such Schro-

dinger functions. This method has been used by Darwin

in an investigation of the motion of probability packets.

To complete this discussion we shall finally carry

through a mathematical treatment of the Wilson photo-

graphs under the assumption that the molecules to be

ionized are regarded as part of the system. This pro-

cedure is more complicated than the preceding method,

but has the advantage that the discontinuous change of

the probability function recedes one step and seems less

in conflict with intuitive ideas. In order to avoid compli-

cation we consider only two molecules and one a-particle,

and suppose the centers of mass of the former to be fixed

at the points x x , y tJ z x; x2 , y2 ,
z2 . The a-particle is in mo-

tion with the momenta p£ , pv , pz ,
and its co-ordinates

are x, y, z. The co-ordinates of the electrons in the mole-

cules may be denoted by the single symbols q x and q 2 ,
re-

spectively; the configuration space will thus involve only

x
, y, z, q 1} and q2 . We inquire for the probability that

both molecules will be ionized and show that it' is negligi-

bly small unless the line joining them has nearly the

same direction as the vector (pxpypz) • All interaction be-

tween the two molecules will be neglected, and their inter-

action with the a-particle will be treated as a perturba-

tion;1 the energy of this interaction may be written

E^{i)+E^{2)=E^{x-Xi
j 3/-*, *-*, qx)

+HM(x—%2 , y-y2 ,
z—z2;q2) ,

1 M. Born, Zeitschrift fur Physik, 38, 803, 1926.
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regarded as operators acting on the Schrodinger func-

tion. The wave equation is then

-~ V^+H°(?I)f+i7°(g^+e[i?M ( 1 )
+#<*>

( 2)]*
071" fl

V ^ J V ;

a-Particle Molecules Interaction l (50)

h d\p

2iri dt
°

*

in which V2 = d2/dx2+d2/dy2+d2/dz2
,
H°(q t) is the energy

operator of the molecule i, and e is the perturbation pa-

rameter in powers of which the wave function is to be

expanded: \[/ = \[/^
o)
+e\l/

U) +e2
\p

(2) Substituting this

series into the wave equation and equating each power of

e to zero, we obtain

- +#<°> (2)^(0)+ ~ -f~
o7i/X 27TZ Of

= 0,

07T jU 27TZ Of

--[H<»(i)+HW(2)]^W
, [

(si)

D7T JLt 27Tt dt

The characteristic solutions of the first equation are

2 iri _ 27rlpM t

lA
(°) = e v

P 'X
<PnXq0v»*(q2)e *

, (52)
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where
HM (q)<pn(.q)=EnVn (q) , (S3>

and

E°=~— p
2 -j-Eni -\-En, (54)

These solutions correspond to the case in which the mo-

mentum of the a-particle is known to be exactly p, its

position therefore entirely unknown, while the molecules

are known to be in the states nz ,
n2 ,

respectively. All inter-

action is neglected, and the problem is to determine how

the interaction modifies this state of affairs.

This may be solved by determining ^(2> according

to the method of Born. These quantities are first ex-

panded in terms of the orthogonal functions <pmi(qx)

fPmSp[a)>

tPrrhifc) > (55)

m% Via

in which the are of course functions of *, y, z,

and t. The significance of these quantities is that

(56)
%

is the probability of observing the molecule 1 in the state

m r ,
molecule 2 in the state m 2 ,

and the electron at x, y, z.

Substituting equation (55) for i= 1 into the first of

equations (51 ), we obtain

v*+En,+E
8tt

2
/jl 21TI ot

j

ni( l)
vntma

— (2)^71

[p-x—En]
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in which the abbreviations

Km,( i) =/<vm(qi)H{i)
(i)<pn,(qi)dqt 1

hrwn* (2) =j'<p^{q2)H^(2) (prh(q2)dq2
J

have been used* The co-ordinates qz and q2 have thus

been eliminated from further consideration; the functions

h(1), A(2)‘are functions of %, y , 0, and of x Zj y x ,
z z or

#a , y 2 ,
02J respectively. These equations may be further

simplified by writing

En
t

V 2̂mXxy^)=wm,m,{xyz)e h
,

whence

(

V

2T ^»ltm3)wmiWa ==
~^2 (^nxmx ( 1 ) ^ flama ”1“ ( 2 ) <5niOTjl) # ^

( 5

where

Q 2 ^Wiraa” j”

-EriiT"-EnaHh~ -22m* -®m3
|

• (59)
8tt

2
/x L 2m J

In this expression the kinetic energy of the a-particle is so

much greater than the other terms that, to a sufficient ap-

proximation, we may take

= k2= 47fp2

_ 4T
2

(60)

Equations (58) are then all of the form

(V2+k2)w%l7na= Pmtm£xyz) ,
(bl)

which is the ordinary equation of wave-motion; PmtmX%yz)

is the density of the oscillators producing the wave, and,
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as it is complex, also determines their phase The solution

of equation (61) is given by Huyghen’s principle:

wiiU

=

R
dx'dy'dz'

,

where R is the distance from x', y', z
r
to x, y, z.

Since, according to (58), pm ,m, is zero unless m I = nI

or m 2 = n2 ,
all the will be zero except and

wi%,; to the first approximation, only one of the two

r,

r2

Fig. 16

molecules will be excited. This is in agreement with the

classical theory, which says that the probability of two

collisions is of second order. The character of the func-

tions and is readily determined qualitatively;

by equation (57)

„ 2iri

07T2fl 7 , \ h P*x

= h,
- h^ix-%1, y-yi, z—zt)e

h

The (fictitious) oscillators producing the wave are thus

all located in the region IT about x„ y x ,
z, (cf. Fig. 16) in
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which h n2iyii is appreciably different from zero. They vi-

brate coherently, their phase being determined essentially

2m

by the factor e
h

; in the figure the lines of equal phase

are drawn perpendicular to p. They are spaced at dis-

tances X0 . According to equation (61) the wave-length

emitted by the oscillators is also X0 ,
and a simple applica-

tion of Huyghen’s principle shows that the wave dis-

turbance will have an appreciable amplitude only in the

conical region which is shaded and whose axis is in the

direction of p. The cross-section of this region near % If y I}

z x is determined by the cross-section of the molecule: F r .

Its angular opening also depends on T z ,
being greater

when T x is small—i.e., the uncertainty relation ApxAx~
h/2iv is fulfilled. Similar considerations apply to w$ma; it is

different from zero only in a beam originating in T 2 and

also having the direction p.

We now pass to the second approximation: v$tma may
also be written w$im2exp(— iiri/h) E°t and equation (51)

reduces to

The right-hand side of this equation will always be

practically zero unless one of the two molecules lies in the

beam originating at the other, for w$ma is different from

zero only in the beam originating in P 2 and hnx7ni {i) only

in r x . Unless these two regions intersect, the first term

will be zero; similarly the second term. Thus the prob-
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ability of simultaneous ionization or excitation of the two

atoms will vanish even in the second approximation un-

less the line joining their centers of gravity is practically

parallel to the direction of motion of the a-particle. These

considerations may be extended to the case of any num-

ber of molecules without essential modification. For

each additional molecule the approximation must be

carried one step farther, but the principles and results

will be the same. It has thus been proved that the ionized

molecules will lie practically on straight lines, and that

the deviations from rectilinearity satisfy the uncertainty

relations. In thus including the molecules in the observed

system, it has not been necessary to introduce the dis-

continuously changing probability packet, but if we wish

to consider the methods by which the excitation of the

molecule can actually be observed, these discontinuous

changes (now of a probability packet in the configuration

space x, y, z, q z, q2) will again play a r61e.

§ 2. DIFFRACTION EXPERIMENTS

The diffraction of light or matter (Davisson-Germer,

Thomson, Rupp, Kikuchi) by gratings may be explained

most simply by the aid of the classical wave theories.

The application of space-time wave theories to these

experiments is justified from the point of view of the

quantum theory, since the uncertainty relations do not

in any way affect the purely geometrical aspects of the

waves, but only their amplitude (cf. chap, iii, § i). The

quantum theory need only be invoked when discussing

the dynamical relations involving the energy and mo-

mentum content of the waves.
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The quantum theory of the waves being thus certainly

in agreement with the classical theory in so far as the

geometric diffraction pattern is concerned, it seems use-

less to prove it by detailed calculation. On the other hand,

Duane has given an interesting treatment of diffraction

phenomena from the quantum theory of the corpuscular

picture. We imagine for simplicity that the corpuscle is

reflected from a plane ruled grating, whose constant is d.

Let the grating itself be movable. Its translation in the

^-direction may be looked upon as a periodic motion, in

so far as only the interaction of the incident particles with

the grating is considered; for the displacement of the

whole grating by an amount d will not change this inter-

action. Thus we may conclude that the motion of the

grating in this direction is quantized and that its momen-

tum pz may assume only the values nh/

d

(as follows at

once from the earlier form of the theory: jpdq— nh).

Since the total momentum of grating and particle must

remain unchanged, the momentum of the particle can be

changed only by an amount mh/d (m an integer)

:

Furthermore, because of its large mass, the grating can-

not take up any appreciable amount of energy, so that

P'x
2+P

/

V
2= pl+P2

y= p
2

•

If 6 is the angle of incidence, 6
f

that of reflection, we have

cos 0= ^- ,
cos d'=~

,

P P
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whence

sin 0'— sin 0 =
mh
pd

From equation A(83) for the wave-length of the wave

associated with a particle it then .follows that

d (sin 0' — sin 0) = m\ ,

in agreement with the ordinary wave theory.

The dual characters of both matter and light gave rise

to many difficulties before the physical principles involved

were clearly comprehended, and the following paradox

was often discussed. The forces between a part of the

grating and the particle certainly diminish very rapidly

with the distance between the two. The direction of re-

flection should therefore be determined only by those

parts of the grating which are in the immediate neighbor-

hood of the incident particle, but none the less it is found

that the most widely separated portions of the grating are

the important factors in determining the sharpness of

the diffraction maxima. The source of this contradiction

is the confusion of two different experiments (Cases I

and II, p. 61). If no experiment is performed which

would permit the determination of the position of the par-

ticle before its reflection, there is no contradiction with

observation if the whole of the grating does act on it. If,

on the other hand, an experiment is performed which de-

termines that the particle will strike on a section of length

Ax of the grating, it must render the knowledge of the

particle’s momentum essentially uncertain by an amount

Ap~h/Ax. The direction of its reflection will therefore
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become correspondingly uncertain. The numerical value

of this uncertainty in direction is precisely that which

would be calculated from the resolving power of a grating

of Ax/d lines. If Ax<£d the interference maxima dis-

appear entirely; not until this case is reached can the path

of the particle properly be compared with that expected

on the classical particle theory, for not until then can it

be determined whether the particle will impinge on a rul-

ing or on one of the plane parts of the surface, etc.

§ 3. THE EXPERIMENT OF EINSTEIN AND RUPP 1

Another paradox was thought to be presented by the

following experiment: An atom (canal ray) is made to

pass a slit S of width d with the velocity v
,
and emits light

while doing so. This light is analyzed by a spectroscope

behind S. Since the light can reach the spectroscope only

during the time t— d/v
,
the train of waves to be analyzed

has a finite length, and the spectroscope will show it as a

line whose width corresponds to a frequency range

On the other hand, the corpuscular theory seems to pro-

hibit such a broadening. The atom emits monochromatic

radiation, the energy of each particle of which is hv
,
and

the diaphragm (because of its great mass) will not be able

to change the energy of the particles.

The fallacy lies in neglecting’the Doppler effect and the

diffraction of the light at the slit. Those photons which

reach P from the atom are not all emitted perpendicularly

1 A. Einstein, Berliner Berichte, p. 334, 1926; A. Rupp, ibid., p. 341,

1026.
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to the canal ray; the angular aperture of the beam of

photons is sin a^'h/

d

because of the diffraction. The Dop-

pler change of frequency due to this is

Ap= sin a
v

c
v

>

or

Av=
\v _ v

cd
V ~

d
J

in agreement with the previous result. In this experiment

the exact validity of the energy law for corpuscles is thus

in conformity with the requirements of classical optics.

5
4

hv.

§ 4. EMISSION, ABSORPTION, AND DISPERSION

OF RADIATION

a) Application of the conservation laws .-—The postulate

of the existence of stationary states, combined with the

__ theory of photons, is sufficient

— to give a qualitative explanation

of the interaction of atoms and

radiation. This was the first de-

cisive success of the Bohr theory.

— The most important results of

this theory may be briefly sum-

marized here. Let the stationary

states of the atom be numbered

1, 2, 3 .... n ... . (Fig. 17),

— counting from the normal state.

An atom in state 3, for exam-

ple, can spontaneously perform a transition to state 2,

and emit a photon of energy hv22=E3—E2 . In the

hv.

1

Fig. 17
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same way, an atom in state i may absorb a photon

of energy hvzl=Ez~E1 and thus be excited to the

state 3. It must be emphasized that these statements

are to be taken quite literally, and not as having only a

symbolic significance, for it is possible (e.g., by a Stern-

Gerlach experiment) to determine the stationary state of

the atoms both before and after the emission. It there-

fore follows that the intensity of an emission line is pro-

portional to the number of atoms in the upper of the two

states associated with it, while the intensity of an absorp-

tion line is proportional to the number of atoms in the

lower state. These results, which have certainly been

amply confirmed by experiment, are entirely character-

istic of the quantum theory and can be deduced from no

classical theory, either of the wave or particle representa-

tion, since even the existence of discrete energy values

can never be explained by the classical theory.

An exactly similar situation is met with in the case of

scattering. If an atom in state 1 is excited by a photon hv

it can re-emit the same light quantum without change of

state (the mass of the nucleus being assumed infinite),

or it can send out the light quantum of energy hv
h=

hv-E2 -\-Ex by transition to state 2 (Smekal1 transition;

see Fig. 18). The intensity of both kinds of scattered light

is proportional to the number of atoms in state 1. If an

atom in state 2 is irradiated with light of frequency v it

can emit a photon of energy hv' =hv+E2—E 1 of shorter

wave-length by transition to state 1, and again the in-

tensity of this “anti-Stokes
5
’ scattered light is propor-

1 Naturwissenschaften, 11, 873, 1923.
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tional to the number of atoms in state 2 This has been

confirmed by Raman’s 1 experiments.

b) Correspondence principle and the method of virtual

charges —The postulate of stationary states and the

theory of photons, because of their very nature, cannot

yield any information either regarding the interference

of the emitted light or even regarding the a priori prob-

ability of the transitions

involved The interfer-

ence properties can be

completely accounted

for by the classical

wave theory, but it is

in turn unable to ac-

count for the transi-

tions. To treat these

successfully a self-con-

sistent quantum theory

of radiation is neces-

sary. It is true that an

ingenious combination of arguments based on the cor-

respondence principle can make the quantum theory of

matter together with a classical theory of radiation fur-

nish quantitative values for the transition probabilities,

i.e., either by the use of Schrodinger’s virtual charge

density or its equivalent, the element of the matrix repre-

senting the electric dipole moment of the atom. Such a

formulation of the radiation problem is far from satisfac-

tory, however, and easily leads to false conclusions. These

hv' hv hv

hv

3

1

hv hi/

-

Fig 18

1 Nature
, 121, 501; 122, 12, 1928.
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methods may only be applied with the greatest caution,

as the following examples may illustrate.

Consider first the case of an atom containing a single

electron, and whose nucleus has an infinite mass. If x =
(x, y, z) be the co-ordinate of the electron, and the

Schrodinger function, then

- exnm= - efx\pn^mdr (63)

is the element of the matrix representing the dipole mo-
ment of the atom. This matrix can enter, strictly speak-

ing, only into calculations based on the principles of the

quantum theory of the electron, which in no way involve

radiation. It may none the less be interpreted as the

dipole moment of the virtual oscillator producing the ra-

diation which is emitted during the transition n->m . This

may be deduced from the correspondence principle by

remembering that it has been shown that xnm~>xn(n—m)
in the limit of large quantum numbers, where xn(n—m)
is a Fourier coefficient of the classical motion. It may
thus be presumed th&t xnm will enter into the formulas de-

termining the intensity of the radiation in the same way

as xn (n—m), i.e., that \xnm
\

2 will be the a priori probability

of the transition n~>m. It must be emphasized that this

is a purely formal result; it does nbt follow from any of

the physical principles of quantum theory.

It may be made plausible by another consideration

which brings out its unsatisfactory character more clear-

ly. It has been pointed out that the solutions \{/n of the

Schrodinger equation are first approximations to the solu-

tions of the classical matter-wave equations [cf. A(8)].

Denoting by \p
c a true solution of the latter, the radiation
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from the charge distribution thus represented will be de-

termined by its dipole moment

—ej\pc
\p

c*xdr

provided the extension of this distribution is small com-

pared to the wave-length of the radiation emitted. Now

whence the radiation, calculated by means of this classical

distribution, should be determined by

. (64)

nm

This formula is certainly wrong since it is derived from

a purely classical theory; the intensity of the radiation of

frequency (.En—Em)/n depends on the coefficient am of the

final state, as well as on an of the initial state. This is

in direct contradiction to Bohr’s fundamental postulate.

The contradiction may be eliminated by arbitrarily dis-

secting the sum into its separate terms, omitting the

offending factors and relating each term to the upper

level. The formula (63) for the moment of the virtual

dipole associated with the transition then appears once

more.

c) The complete treatment of radiation and matter .—The

consistent treatment of radiation phenomena requires

the simultaneous application of the quantum theory to

radiation and matter, in which case it is naturally imma-

terial whether the particle or wave representation is used.
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Dirac, 1 in his radiation theory, employs the language of

the particle representation, but makes use of conclusions

drawn from the wave theory of radiation in his derivation

of the Hamiltonian function. The fundamental ideas of

this theory are briefly outlined here.

The atom will be represented by a single electron mov-

ing in an electrostatic force field <p0 . The relativistically

invariant equation of the one electron problem is, accord-

ing to Dirac2
(<£0 scalar potential, <j> % [i

—
1, 2, 3], electro-

magnetic potentials),

or

6 6
£o+~ — (j>t)-\-a4mc= o

, (65)
c c

H= — e<t>0
—

(j)^J

— a4mc
2

. (66)

(The usual summation convention is adopted.) Here, as

before, the p %

’

s are the momenta canonically conjugate

to the qiy and the a’s are operators which satisfy the

equations

0>%dk~\~ (Lk&i == , 0,iCL4
~\~ CL4 CL% O

,
CL^— I • (67)

From the equations of motion it follows that

dH d<j>k
r — CLfcC /
dqi axi

& (68)

Except for a factor (— c) the c^’s are thus identical with

the velocity matrices. From (66) it follows that the inter-

1 Proceedings of the Royal Society
,
A, 114, 243, 710, 1927.

2 Ibid.
t
117> 610, 1928.
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action energy of atoms and radiation field can be written

in the simple form

— a te<t>i
= -

c q t4> % . (69)

The Hamiltonian function of the complete system atom

plus radiation field is thus

H total system —$atom K Qi&i i ffradiation field * (70)

The problem is brought into a simple mathematical form

by assuming the radiation field to be in an inclosure, thus

providing an orthogonal system of functions on solution

of the Maxwell equations subject to the appropriate

boundary conditions. The <f) l may be developed in this

system, and the coefficients [cf. A(i23) and (124)] may

be written in the form

where Nr is the number of light quanta belonging to the

rth characteristic vibration. The total energy of the radia-

tion field before considering its interaction with the atom

is simply

Hradiation field
==2 NThvr

. (71)

In the development of the <j>% in the orthogonal system

the individual terms still depend on the position of the

atom in the inclosure. Since the dependence averages out

in the final result when the inclosure is sufficiently large,

it is convenient to introduce a mean-square amplitude ob-
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tained by averaging the square of the true amplitude over

all possible positions of the atom This yields the follow-

ing expression for 4> t :

Here air is the angle between the electric vector of the rth

characteristic vibration and the £*-axis, and <xr is the

number of characteristic vibrations in the frequency in-

terval Avr and solid angle Aoo r divided by AvrAcor . Thus

the Hamiltonian function for the complete system is

H—Hatom~\~ NM

where qr is the component of the vector q in the direction

of the electric vector of the rth characteristic vibration.

From equation (73) all the results obtained above by

the use of the conservation laws may immediately be de-

duced. Thus the constancy of H may be proved as in the

Appendix (§ 1, p. 121), and it further follows that for the

emission or absorption of a light quantum hvr the essen-

tial factor is the matrix element of qr corresponding to the

transition concerned. Except for certain numerical fac-

tors which will not be calculated here the transition

probability is given directly by the square of this matrix

element. If the calculation is carried out (the interaction

terms being regarded as perturbations), emission and ab-

sorption processes appear as first-order effects and dis-
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persion phenomena as second order. For the details of the

calculation the reader is referred to the papers of Dirac.1

The formulation of the Hamiltonian of the radiation

problem in equation (73) has the disadvantage that it

does not appear to involve the interference and coherence

properties of the radiation. This is only the case, how-

ever, when mean amplitudes are used, as in the foregoing.

If the correct amplitudes resulting from the development

of the in the orthogonal functions are retained, then

the fact that these functions are solutions of the Maxwell

equations assures interference and coherence properties

for the radiation that correspond to the Maxwell equa-

tions. For example, solutions of the Maxwell equations

appear as factors of the quantities ar in A (113) and these

factors disappear at the position occupied by the atom

when the vector potential vanishes there because of inter-

ference. Thus there will be no absorption of light in

regions where there would be none according to the

classical interference theory. From these considerations

it follows at once that the classical wave theory is

sufficient for the discussion of all questions of coherence

and interference.

§ 5. INTERFERENCE AND THE CONSERVATION LAWS

It is very difficult for us to conceive the fact that the

theory of photons does not conflict with the requirements

of the Maxwell equations. There have been attempts to

avoid the contradiction by finding solutions of the lat-

ter which represent “needle” radiation (unidirectional

1 Dirac (loc . cit.) uses the original Schrodinger form in place of the

Hamiltonian function (73). With the use of (73) the calculation is some-

what simpler, since the quadratic terms in <f>i drop out of the interaction

energy. The results are the same as those of Dirac.
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beams), but the results could not be satisfactorily inter-

preted until the principles of the quantum theory had

been elucidated. These show us that whenever an experi-

ment is capable of furnishing information regarding the

direction of emission of a photon, its results are precisely

those which would be predicted from a solution of the

Maxwell equations of the needle type (cf. the reduction of

wave-packets, II, § 2c).

As an example, the recoil produced by the emission of

a photori will be discussed. Let an atom go from station-

ary state n to m with the emission of a photon, and an

appropriate change of its total momentum. As we are

only concerned with the coherence properties of the

emitted radiation, we use the correspondence-principle

method, in which the radiation is calculated classically.

As source of the radiation we take a charge distribution

which is modeled after the expression which would be

given by the classical theory of matter waves. The atom

will be supposed to consist of one electron (of mass ju,

charge — e, co-ordinates re) and a nucleus (of mass M,
charge +e, co-ordinates rn). The Schrodinger function of

the nth state, in which the atom has the total momentum
P9 is

rc

^n(je—rn)e h
Et

where rc ==(jAre+Mrn)/(fjL+M) is the vector to the center

of gravity of the atom. If the matrix element of the prob-

ability density associated to the transition n->m, P->P'9

£->£', be calculated, one obtains

2iri
(P-PO • rc

, ,
n ~ {E-mt

tn(re—

r

n)\pm(je— rn)e
h
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By averaging over the co-ordinates of the nucleus, one

obtains the charge density due to the electron, by averag-

ing over the co-ordinates of the electron, that due to the

nucleus; the total charge density is their sum. This den-

sity is to be considered as the virtual source of the emitted

radiation, at least in so far as its coherence properties are

concerned. The two component densities are [the com-

mon factor e is omitted, r = re — rn is the variable of in-

tegration, dv the volume element, and y~M/(ix+M)]

pc £

p« £
(P-P')

"'p

"p

**?y(P-P')-r
'Pni'mdv • e

h
.

Y(P-P*) * r

\Mmdv • e
h

(E-E')t

The total density is thus

p = Const, e
ItP-P'

)

* r~{E—E')t}

in which the value of the constant does not interest us.

The current densities are given by analogous expressions.

The radiation emitted by these charges is to be calculated

from the retarded potentials:

*o=fp(t-R'/c)/R' • dv

is the scalar potential and analogous expressions may be

obtained for the vector potentials (R r

is the distance

from the point of integration, r, to the point of observa-

tion JR). The result is therefore

$0 = Const.

exp [(P~P') * r-iE-ETM-R'/c)]
_ dv

.
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If one supposes that an experiment has determined the

position of the atom with a given accuracy (the value of

the momentum P must then be correspondingly uncer-

tain), then this means that the density p is given by
the foregoing expression only in a finite volume Av, and
is zero elsewhere. If the radiation at a great distance from

Av is required, R' may be expanded in terms of R (the

co-ordinates of the point of observation) and r (the co-

ordinates of the point of integration)

:

R'=R-R X • r,

where R t= R/R. The scalar potential is then given by

<t>0 = Const, e •

' it-R/c)

J(1/R)e
--~(P—Pr~hv Ri/c) • r

dv

in which hv —E—E }
.

The integral is appreciably different from zero only in

that regions for which the factor of r in the exponential

is less in absolute magnitude than the reciprocal of A/,

the linear dimension of Av, In all other regions, the radia-

tion from different portions of Av is destroyed by inter-

ference. Hence

P-P'= hvRx/c±h/Al ,

and the atom recoils with the momentum kvR x/c (except

for the natural uncertainty hjAX). If the direction of re-

coil is determined by some experimental procedure, the

emitted radiation thus behaves like a unidirectional beam.

This is only a special case, however, which is realized

only when P and P f
are determined with sufficient ac-

curacy, and the co-ordinates of the center of gravity are
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correspondingly unknown. The other extreme is realized

when the experiment fixes the position of the atom more

precisely than Al = h/\P —P r
\—c/v^ i.e., more precisely

than one wave-length of the emitted radiation. The ex-

pression for $o then represents a regular spherical wave

and no conclusions can be drawn concerning the recoil,

since its uncertainty is greater than its probable value.

This example illustrates very clearly how the quantum

theory strips even the light waves of the primitive reality

which is ascribed to them by the classical theory. The
particular solution of the Maxwell equation which repre-

sents the emitted radiation depends on the accuracy with

which the co-ordinates of the center of mass of the atom

are known.

§ 6. THE COMPTON EFFECT AND THE EXPERIMENT
OF COMPTON AND SIMON

There are analogous relations in the theory of the

Compton effect, but even though the calculations are the

same as those of the preceding paragraph, a summary of

the essential results will be given here. It is more interest-

ing to consider bound electrons than free electrons, for

then (if one assumes the position of the stationary atomic

nucleus as given) there is a certain a priori knowledge

concerning the position of the scattering electron. The
laws of conservation result in the equations

hv+E= hv'+E'
,

hv hv' . . .— e±~Ap —— e +p ,
c c

The unprimed letters refer to variables before the col-

lision, and the primed ones to variables'after the collision;
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p is the linear momentum of the electron, and e and e
f

signify unit vectors in the direction of motion of the light

quantum; Ap gives the range of momentum of the elec-

tron in the atom. If ~Ap is small compared with p and

hvjc

j

then (74) enables correspondingly exact conclusions

regarding the relation between the directions e' and p'

to be drawn. If, for example, p' be measured in a Wilson

chamber, then the radiation will have all the properties of

needle radiation, since the direction of emission of the

light quantum is determined. If p'^>Ap, then the trans-

lational wave function may be regarded as that of a plane

wave, namely, exp 27rijh‘(p' -r— E't) ,
where r is the vector

specifying the position of the electron. Let the wave func-

tion of the unperturbed state £, which will be assumed to

be the normal state, be Pe(j) exp 2Tri/h'Et
,
where Pe is

different from zero in an interval Al[Al*Ap~h],

These wave functions are perturbed by the incident

wave of frequency v
,
and the perturbation function is a

periodic space function of wave-length \-c/v . Therefore,

as the final result for the perturbed charge distribution,

one obtains an expression of the form

girt q 2m

P= cfE(r)e
k

1

! (--), -(.p-r-E’t)

= cfE(r)e
r-(E-E'+hr)t

(75)

Where fE is different from zero only in the interval Al.

If one writes the retarded potentials for points at a great

distance from the atom, then1

$0 (R) = ce~
"vHn %yatorri

v fE (r')e

2Tcj 1 1

f\
P h v

i Ihv f

s

(76)

1 G. Breit, Journal of the Optical Society of America

,

14, 324, 1927.
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In this equation kv'-E—E'+hv, r’ is the vector to the

point of integration, R to the point of observation, and

R'-R — r'. The time factor in equation (76) shows that

the frequency of the scattered radiation is v and cor-

responds to that of equation (74). Furthermore, the in-

tegral on the right-hand side of equation (76) vanishes be-

cause of interference, if the factor of r' is materially

greater than the reciprocal atomic diameter. Accordingly,

since AlAp^h,

— e-~ e'+p'±~Ap, (77)
c c

in agreement with the second equation of (74). The scat-

tered radiation behaves, therefore, in so far as its coher-

ence properties are concerned, like needle radiation. How-

ever, the direction of the light quantum is not exactly

prescribed, which may be regarded as a consequence of

the indeterminateness of the momentum in the original

stationary state. This indeterminateness can be dimin-

ished if one experiments with more loosely bound elec-

trons, but then the atomic cross-section will be corre-

spondingly greater. If one applies the considerations to

an excited state, then AlAp^nh appears in place of

AlAp^h and in the evaluation of the retarded potentials

one must take the number of nodes of p{r') into account.

Since this involves only nonessential complications, we

have confined ourselves to the normal state.

If one wishes to explain the Geiger-Bothe experiment

on the simultaneity of emission of recoil electron and

scattered photon, then if the correspondence principle

methods sketched here are used, one must deal with
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charge distributions which radiate only during a definite

time interval. The initial state of the electron will be

given, by a wave-packet at rest, whose size depends on the

experimental arrangement. The final state will be repre-

sented by a morning wave-packet, and the charge density,

given by the product of the two wave functions, will then

be different from zero only during the time the two
packets overlap. The radiation produced will then be a

finite wave train moving in a definite direction. A more
consequent explanation of the Geiger-Bothe experiment,

even though it is equivalent in all its essential points, can

only be obtained from the quantum theory of radiation.

Moreover, as already shown, in this theory the laws of

conservation applied to light quanta and electrons hold,

so that one can, without any misgivings, use the custom-

ary corpuscular theory of this experiment.

§ 7. RADIATION FLUCTUATION PHENOMENA

The large mean-square fluctuations, which belong to a

corpuscular theory, are contained in the mathematical

framework of the quantum theory, as shown in the Ap-

pendix. It is especially instructive, however, to study the

relations between the various physical pictures with

which the quantum theory operates by calculating the

fluctuation of a radiation field. Let there be given a black

cavity, of volume F, containing radiation in temperature

equilibrium. The mean energy j£ contained in a small

volume element AF in the frequency range between v and

v+Av is, according to Planck’s formula,

==-__ 2>ir
2hv AvAV

k̂7/W—^

;

(78)
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k is the Boltzmann constant and T the temperature. Ac-

cording to general thermodynamic laws,1 the following re-

lation holds for the mean-square fluctuation of JB :

AJB^kT-
d,J£

dT '

Substituting into equation (78), it was shown by Einstein

that

AJS* = hvJB +

corpuscle

c3

&tt
2v2ApAV‘

wave

18

(79)

This value for the mean-square fluctuation can only be de-

rived partially with the help of the classical theory. The

corpuscular viewpoint yields

N

dE = hvn . (80)

The classical particle theory thus results only in the first

part of formula (79). The classical wave theory of radia-

tion, on the other hand, leads exactly to the second part

of (79). The calculations for this will be given later in

connection with the quantum theory. Thus, the quantum

theory proper is necessary for the derivation of formula

(79), in which it is naturally immaterial whether one uses

the wave or the corpuscular picture.

If, in particular, one treats the problem by means of

the configuration space of the particles (although it is

true that this has not been done in a detailed manner for

1
J, W. Gibbs, Elementary Principles in Statistical Mechanics , pp. 70-

72, 1902.
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light quanta), then one must note that the whole term

system of the problem can be subdivided into non-com-

bining partial systems, from which a definite one can be

chosen as a solution. Because of the exchange relations

(84), which become apparent from the corresponding un-

certainty relations, that term system must be taken whose

characteristic functions are symmetric in the co-ordinates

of the light quanta. This choice leads to the Bose sta-

tistics for the light quanta and also, as Bose1 has shown,

to equation (78).

If the wave picture be used, then one obtains the num-

ber of light quanta corresponding to the vibration con-

cerned from the amplitudes of the characteristic vibra-

tions, and therefore the same mathematical scheme. In

order to avoid unnecessary complications in the calcula-

tions, let us treat a vibrating string of length l instead of

the black radiation cavity. Let <p(%, t) be its lateral dis-

placement, and c the velocity of sound in the string. The

Lagrangian function becomes

> (so

whence (A § 9)

n=I is?

c
2 dt

’ (82)

and

(83)

The following exchange relations are to be used:

xr

) . (84)

1 Zeitschrift fur Physik, 26, 178 , 1924 .
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With the introduction of

<p(x
}
l) =yj~^qk (() sin ~~

,

k

H goes over into

k
K X

On introducing the momenta associated to qkj

Pk= ~
2 ik >

equation (84) becomes

pkqi— qifik= Ski
—
2in

P*= \f

e‘

+e_1?
6

^.

A/.* a

f
l
e* -?

l’"
e‘

ATi

'

2xl
A le N*J

The characteristic frequencies of the string are vk —
k(c/2l), and therefore

H=^?hn(Nk+-

1

) .

For the energy in a small section (o, a) of the string, one

obtains, however,

if56*
. . . jirx . kirx
q7qk sin-

7-- - sin - —

, •t/7r\
2 &7rxl 7 , v

y )
cos*

7— cos —Wac . (90)
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If the terms of this sum with j — k be singled out, then

under the explicit hypothesis that the wave-lengths to be

considered are all small with respect to a
,
one obtains the

value

*=?•

One thus finds the fluctuation A)£ = 55 —E by neglecting

the terms with j — k in (90) . The integration results in

where

AJ6 =

Kjh — c

Kjk— c

',E{j ,

k

sin (v 2
— vi)a/c sin {vj+vija/c

Vj—vk Vj+n

sin (vj — vk)a/c
^
g
sin (y 3

+Vk)a/c

Vj— Vk Vj+n

(91)

(92)

Accordingly, the mean-square fluctuation is given by

+0) ^2 UtA) Wk+qtti qkqk)KjkKjk^

The sums over j and k may be replaced by an integral

over the frequencies vj and vk, respectively, if it be as-

sumed that the string l is very long, so that its characteris-

tic frequencies are close together. In addition, one finally

assumes that a is large and uses the relation

lim
00

x C"' sin2

« J-*.

va
- f(v)dv= irf{o) (93)
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if v x >o, v 2 >o. The double integral then becomes a simple

integral and one finds that

[(?)*]'

+i(2f)'[ (55)-+ (S)l}. («)

Because of the exchange relations (84),

•> (95)

so that

dvZv hv{Nv+ 1) , (96 )

where Zjlv denotes the number of characteristic frequen-

cies in the interval dp, or, in this case, Zv
— 2ljc. If the in-

tegral be taken over the frequency interval Av, one ob-

tains

J6 = ~ Zv Av hv(Nv-\-%) , (97)

(99)
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This value corresponds exactly to formula (79). The cor-

responding relation in the classical wave theory may be

obtained by passing to the limit h = o in (99) . The clas-

sical wave theory thus leads only to the second term of

equation (99). The quantum theory, which one can in-

terpret as a particle theory or as a wave theory as one

sees fit, leads to the complete fluctuation formula.

§ 8. RELATIVISTIC FORMULATION OF THE
QUANTUM THEORY

The conditions imposed on all physical theories by the

principle of relativity have been neglected in most of the

foregoing discussions, and consequently the results ob-

tained are applicable only under those conditions in which

the velocity of light may be regarded as infinite. The

reason for this neglect is that all relativistic effects belong

to the terra incognita of quantum theory; the physical

principles which have been elucidated in this book must

be valid in this region also and thus it seemed proper not

to obscure them with questions that cannot be aswered

definitely at the present time. None the less, this book

would be incomplete without a brief discussion of the at-

tempts to construct theories which shall embody both sets

of principles, and the difficulties which have arisen in

these attempts.

Dirac1 has set up a wave equation which is valid for

one electron and is invariant under the Lorentz transfor-

mation. It fulfils all requirements of the quantum theory,

and is able to give a good account of the phenomena of

the “spinning” electron, which could previously only be

1 P. A. M. Dirac, Proceedings of the Royal Society, A, 117, 610, 1928.
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treated by. ad hoc assumptions. The essential difficulty

which arises with all relativistic quantum theories is not

eliminated however. This arises from the relation

j2 E*=,xV+pl+p
2

y+pl (ioo)
c

between the energy and momentum of a free electron.

According to this equation there are two values of E
which differ in sign associated with each set of values of

Px, Pv , pz • The classical theory could eliminate this by

arbitrarily excluding the one sign, but this is not possible

according to the principles of quantum theory. Here spon-

taneous transitions may occur to the states of negative

energy; as these have never been observed, the theory is

certainly wrong. Under these conditions it is very re-

markable that the positive energy-levels (at least in the

case of one electron) coincide with those actually observed.

The difficulty inherent in formula (ioo) is also shown

by a calculation of 0 . Klein, 1 who proves that if the elec-

tron is governed by any equation based on this relation it

will be able to pass unhindered through regions in which

its potential energy is greater than 2mcz
. If only motion

in the ^-direction be considered the formulas (31a) (31c)

become

E2

--- =v2c*+p2
x ,

1 Zeitschriftfur Physik, 53, 157, 1929.
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whence

P'x*= Pl
{E-vy-E?

^ c2 ?

while the wave function has the form

e h

For very small values of V
,
p'x is real and there are trans-

mitted waves, just as in chapter ii, §2/. For larger values,

p'x becomes a pure imaginary, so that the wave is totally

reflected at the discontinuity and decreases exponentially

in region II. But for very large values of V, px again be-

comes real, i.e., the electron wave again penetrates into

the region II with constant amplitude. A more exact cal-

culation verifies this result.

A difficulty of a somewhat different character arises in

the calculation of the energy of the field of the electron

according to the relativistic theory. For a point electron

(one of zero radius) even the classical theory yields an

infinite value of the energy, as is well known, so that it

becomes necessary to introduce a universal constant of

the dimension of a length—the “radius of the electron.”

It is remarkable that in the non-relativistic theory’ this

difficulty can be avoided in another way—by a suitable

choice of the order of non-commutative factors in the

Hamiltonian function. This has hitherto not been pos-

sible in the relativistic quantum theory.

The hope is often expressed that after these problems

have been solved the quantum theory will be seen to be

based, in a large measure at least, on classical concepts.

But even a superficial survey of the trend of the evolution
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of physics in the past thirty years shows that it is far more

likely that the solution will result in further limitations

on the applicability of classical concepts than that it will

result in a removal of those already discovered. The list of

modifications and limitations of our ideal world—which

now contains those, required by the relativity theory (for

which c is characteristic) and the uncertainty relations

(symbolized by Planck’s constant h)—will be extended

by others which correspond to e, fx }
M . But the character

of these is as yet not to be anticipated.



APPENDIX
THE MATHEMATICAL APPARATUS OF

THE QUANTUM THEORY2

For the derivation of the mathematical scheme of the

quantum theory, whether based on the wave or the

particle picture, two sources are available: empirical facts

and the correspondence principle. The correspondence

principle, which is due to Bohr
,

3 postulates a detailed

analogy between the quantum theory and the classical

theory appropriate to the mental picture employed. This

analogy does not merely serve as a guide to the discovery

of formal laws; its special value is that it furnishes the

interpretation of the laws that are found in terms of the

mental picture used.

We commence with a derivation of the mathematical

structure of quantum mechanics from the corpuscular

analogy .
4

§ X. THE CORPUSCULAR CONCEPT OP MATTER

The fundamental equations of classical mechanics for a

system of /-degrees of freedom may be written in the so-

called “canonical” form,

dE . dE , N ,
v

«‘"5£’ C*-i, W
1 Unless otherwise indicated equation numbers and section numbers

refer to the Appendix.

3 Cf. Translators’ note in Preface.

3 Cf. N. Bohr, Zeitschrift fur Physik

,

13, 1x7, 1923.

4 W. Heisenberg, ibid., 33, 879, 1925; M. Born and P. Jordan, ibid.,

34, 858, 1925; M. Born, W. Heisenberg, and P. Jordan, ibid., 35, 557,

1926. Cf. also W. Heisenberg, Mathematische Annalcn, 95, 683, 1926.
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where q l9 q2) . . . • , qj are the generalized co-ordinates,

pz, p 2 ,
. . . • , pf their conjugate momenta, and H the

Hamiltonian function. When H does not depend explicit-

ly on the time the energy equation

B(p,q) = W, ( 2 )

where W, the total energy, is a constant, follows at once.

For simplicity it may be assumed that the system is

multiply periodic, in which case any co-ordinate qk as a

function of the time may be written as a Fourier series,

that is, as a sum of harmonic terms in the form

+00 4-co +00

?*- 2 2 ’

' 2 .,r
/
e‘Tt(T,n+T,y,+ -

(3)

Ti = — 00 Ta=~00 Tj= — CO

The q
(®

Tl) . t Tf
are amplitudes independent of the time

and v X) .... j
vj are the fundamental frequencies of

the motion. Similar expressions involving the same fre-

quencies may be written for the p k and in general for any

function of the pk and qk .

By a canonical transformation—that is, one which

leaves invariant the form of equations (1)—it is possible

to introduce a new set of canonical conjugates JK ,
wkj

known as “action-angle variables.” These are essentially

defined by the following properties: The Hamiltonian H
depends on the Jk only and the wk are related to the

fundamental frequencies of the motion by equations of

the form

Wk= T>ki-\- Pk
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where the f5k are constants. In these variables the equa-

tions of motion therefore become

r
m . m

(Jk=~d¥k
’ Wk=n=Wk

’ w

According to classical electrodynamics the frequencies

of the spectral lines emitted by an atom will be the fre-

quencies of the harmonic terms in equation (3) and the

amplitudes will determine the corresponding intensities.

According to the correspondence principle there must

exist a close relationship between the mechanics of clas-

sical particles as outlined above and the mechanics of the

quantum theory. For the latter we must therefore seek a

set of equations analogous in form to the equations of

classical theory, but which also take account of certain

well-established empirical facts of atomic physics. Pri-

mary among these are the following

:

1. The Rydberg-Ritz combination principle .—The ob-

served spectral frequencies of an atom possess a char-

acteristic term structure. That is, all the spectral lines

of an element may be represented as the differences of a

relatively small number of terms. If these terms are ar-

ranged in a one-dimensional array Tl9 T2 ,
....

}
the

atomic frequencies form a two-dimensional array

v(nm) = Tn-Tm , (5)

from which follows at once the combination principle

v(nk)-\-v(km) = v(nm) . (6)
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2. The existence of discrete energy values .—The funda-

mental experiments of Franck and Hertz on electronic im-

pacts show that the energy of an atom can take on only

certain definite discrete1 values, W x ,
W2 ,

3. The Bohrfrequency relation.—The characteristic fre-

quencies of an atom are related to its characteristic en-

ergies by the equation

v(nm)=J (Wn—Wm) (7)

We shall now sketch the deduction of the fundamental

equations of the new quantum mechanics, following the

program outlined above. It should be distinctly under-

stood, however, that this cannot be a deduction in the

mathematical sense of the word, since the equations to be

obtained form themselves the postulates of the theory.

Although made highly plausible by the following con-

siderations, their ultimate justification lies in the agree-

ment of their predictions with experiment.

A profound modification, not only of classical dy-

namics, but of classical kinematics, is evidently necessary

if the simple experimental facts mentioned above are to

be incorporated in the foundations of a new theory. In

the classical theory all possible motions of the co-

ordinates may be built up by addition from Fourier terms

of the kind contained in equation (3), and these may be

termed the “kinematic elements,” since the quantities

with which the theory deals, and in particular the energy,

1 In general, the atomic energy can also take on continuous values in a

certain range. For the time being this “continuous spectrum” may be dis-

regarded, corresponding to the assumption that the system is multiply

periodic.
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can be expressed in terms of them. Their amplitudes and

frequencies are functions of continuously variable con-

stants of integration as well as of the integers r x .... 77,

which determine the order of the harmonics. This is in

direct contradiction to the existence of only discrete

values of the atomic energies and frequencies and, in fact,

to the very existence of sharply defined spectral lines.

Similar elements must be assumed in quantum mechan-

ics if a correspondence is to be preserved between the two

theories. To assure the existence of discrete energy values

at the outset, the elements will be taken to be functions

of integers. Corresponding to the Rydberg-Ritz combina-

tion principle, a dependence on two sets of integers is re-

quired, while the /-fold character of the classical har-

monics suggests that each set contain / integers. We
therefore postulate elements of the form

q(nx . . rif ; mx . . mf)e2irl^nt * • n
/'

y (8)

in which the complexes n x .... ny and m x .... my re-

place the single integers n and m in an easily understand-

able way. Furthermore, the amplitudes and frequencies

are assumed to be directly those which are given by a

spectral analysis of the emitted radiation, so that the new

theory may be described as a calculus of observable quan-

tities. The frequencies v(nx .... ny; m x . . . . my) are

therefore assumed to have the term structure (5); they

accordingly obey the combination principle (6).

There can clearly be no question of the addition of such

elements to form a Fourier series as in the classical theory;

there must, however, be an analogue to the representation
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of a co-ordinate by such a series. A sufficiently general

and flexible method is afforded by taking simply the en-

semble of all elements of the form (8) as the entity which,

in the quantum theory of the particle picture, replaces

mathematically the classical representation of a co-

ordinate given in equation (3). The ensemble may be

written as a matrix,

||
q(nx . . ft/ ; nh . . m^e2^ 711 • * nf; mi • * 771f)l

||
,

that is, as an infinite quadratic array, ordered according

to the integers n

m

l ,
which take on all real values. The

new kinematics is accordingly based on a matrix repre-

sentation of the co-ordinates, with

qk—

1

|
qk{nm)e

2Tl^nm)t
||

(9)

corresponding to qk . As here, the complexes n x .... %
and m t .... m/ will, in general, be replaced by single

letters n and m. For the momenta p k a similar matrix

representation is assumed, with the same frequencies, as

is the case in classical Fourier series.
1

Such a representation is, however, meaningless both

mathematically and physically until properties and rules

of operation for the matrices have been defined. The cor-

respondence principle must be our guide here. In the first

place, the classical expression (3) must have a real value;

since the terms are complex this can be the case only if

for each term there occurs the conjugate imaginary. This

1 For a system which is not multiply periodic, matrices with continu-

ously variable indices must be used, corresponding to a classical represen-

tation by Fourier integrals.
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will also be true of the elements of the matrix (9) if we
assume

qiimn) = q*(nm)
,

since by (6) v(mn) = —v{nm). The asterisk denotes the

conjugate imaginary. Matrices with this type of sym-

metry are called Hermitian and in the quantum theory

all co-ordinate matrices are assumed to be of this kind.

The time derivative q iK
of any co-ordinate is represented

classically by the Fourier series whose terms are the time

derivatives of those of the series representing qfl
. Hence

for the quantum-theory matrices

q=\\ 2Tiv(nm)q(nm)e2™t nm>}t
|| , (10)

which is again a Hermitian matrix of the form (9).

It must be possible in the quantum theory to answer

such elementary kinematical questions as the following.

Given the matrices representing, say, a momentum p and

a co-ordinate q ,
what matrices represent p+q, pq, and in

general any function of p and q? In the case of addition

the answer is obvious from the classical analogue. Since

the sum of two Fourier series of the form (3) is again a

series of the same kind and with the same frequencies, but

with amplitudes which are the sums of the component

amplitudes, we must expect for the elements of the quan-

tum-theory matrices

(p+ q) (fitri) =
j |

[p(nm)+q(nm)]

e

2irly(nm
j j

.

The rule for multiplication is defined from similar con-

siderations with, however, a characteristic difference
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from classical multiplication, due to the fact that the

quantum frequencies obey the Rydberg-Ritz combina-

tion principle. The product of two Fourier series in the

classical theory may be written as the double sum

pq= ,

<r o'

where cr replaces the complex crt .... cr/ and [(or+cr')v]

stands for (crI +<r
/

J)v1+ .... +(<r/+<r/)jy. To write this

again in the form of equation (3) terms of the same fre-

quency must be collected, i.e., those for which <r+(r
/ = r,

giving

pq=
/̂
(i>q)r^

nlr”]t
,

r

where

^ ^
Por^r—o • (**)

a

In the quantum theory the matrix representing pq must

be an ensemble made up of terms p(nm)e2™inm)t and

q{nm)e2*iv(-nm)l
. A matrix of the type (9) is again ob-

tained if all elements with the same frequency are added

together, i.e., those for which v(nk)+v(km) = v{nm) by

the combination principle (6). The new amplitudes are

therefore taken to be

pq(nm) = ^Pp(nk)q(km)
, (12)

k

and the elements are then pq{nm)e2Ti',{
-
nm)t

.
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This is the well-known mathematical rule for the multi-

plication of matrices or tensors, and justifies the use of

these terms here. As is obvious from equation (12),

pq(nm)y£qp{nm)
y
so that multiplication in the quantum

theory is non-commutative—a result of great importance

for the further development.

By means of the rules for addition and multiplication

a meaning is given to any function x{p
, q) of the co-

ordinate and momentum matrices, at least in so far as the

function may be expressed as a power series. The ele-

ments of the function x will always be of the form

#(^w)£27rlV(nm)
* and the array of frequencies v(nm) will

always be the same for a given atomic system. Hence a

matrix is sufficiently well represented by its amplitudes

x(nm) alone, the exponential terms being understood.

The customary definitions and conventions of the

theory of matrices are adopted in the quantum theory.

Equality of two matrices means equality of correspond-

ing elements. The unit matrix is defined as the matrix

whose diagonal elements are all unity and whose non-

diagonal elements are zero. It is conveniently written

I —
[ j

$nm
j |

*

where

f

i when n~m
,

o when .

The reciprocal x~~
z of a matrix x is the matrix satisfying

the equations

X lX—XX 1= I .
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The transpose x of x is the matrix \\x(mn)\\ obtained by-

interchanging the rows and columns of

We are now in possession of the elements of a quantum

algebra, in which it is readily seen that all the rules of

ordinary algebra remain valid with the exception of the

commutative law. Thus if x, y, and z represent any func-

tions of the dynamical variables they obey, in the quan-

tum theory, the rules of matrix algebra:

x+y—y+x

,

x{y-\-z)=xy-\-xz ,

x{yz)-(xy)z
,

(x+y)+z=x+(y+z) ,

but, in general,

xy^yx .

So far the Planck constant h, which must play a funda-

mental role, has not been introduced into the theory. Its

appearance proves to be closely related to the non-com-

mutativity of the variables which forms so striking a con-

trast to the classical theory. In fact, it has been found

by Dirac1 that in the quantum theory the expression

( :2iri/h)(xy-yx) is the analogue of the Poisson bracket

_ -sr> /dx dy _ dy dx \
[Xyl " 2L, \dqk dpk dql dpj

in classical mechanics. The invariance of this expression

with respect to canonical transformations of the p k and

1 P. A. M. Dirac, Proceedings of the Royal Society
,
A, 109, 642, 1925.
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qk is well known. In order to make plausible this signifi-

cant connection it will be shown that in the limiting

region where the integers n and m are large compared to

their differences there is asymptotic agreement between

the matrix elements of (27ri/k)(xy—yx) and the harmonic

elements of the classical bracket expression [xy]. It is first

necessary, however, to state more exactly the connection

between the matrix elements and the Fourier amplitudes.

It will be recalled that in the theory of stationary

states, which formed a preliminary stage in the develop-

ment of the present quantum mechanics, the existence of

only discrete energy values is attained through the fixa-

tion of “stationary” classical motions. If these are defined

from among the continuum of possible motions by the

equations 1

Jk= nkh (&= 1, 2, , (13)

where the Jk are the action variables and the nk integers,

the Bohr frequency condition (7) then appears as the

analogue of the classical relation

dll
Vk

dJk
’

For since S' is a function of the nk only by equations (4),

dH/dJ

i

may be written

dH H(nx . . nf)—H{n x . . nk— ah . . ,
nf)

dJk i™ akh

1 A possible degeneracy is here neglected.
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and in the limiting region where the nk are very large

compared to the ak ,

I>{n x . . nf; ml .
.

[H(nx . . %) —H{fh— a x , . . ,
nf— a/)]

dH
,

dH
r^a z

- 1- . . +a/ -

—

oWi on/

= ai^i+ . . + a/?/ .

There is therefore asymptotic agreement in this region,

which may be briefly referred to as that of large quantum

integers, between the spectral frequency v(n x ... . nf
nix .... nif) and the harmonic (n x—m x)v x+ . . . i

+ (n/—Mf)vf in the (nx ... . nj) or (m x . . . . mj) station-

ary state. Since the harmonic elements of the matrices

of quantum mechanics represent the spectral lines this sug-

gests a general co-ordination between the matrix element

q(n x .... nf; nx-a x , . . .
.,
nf-af)e

2™(n* * * * w/> * n/” a/^

and the harmonic (a x . . . . a/) in the (n x . . . . %) sta-

tionary state. More briefly,

q(n, n— a)e27riv{
-
n> n ~' a)t corresponds to qa(n)e2irl[av]t

(14)

in the region of large quantum numbers. This co-ordina-

tion is further justified by the approximate agreement

found empirically in this region between the intensities

calculated classically from the Fourier amplitudes qa(n)

in the stationary states and the intensity of the spectral

line v(n
,
n—a). The indices n and m of the matrix ele-

ments thus correspond to the quantum numbers of two

stationary states, while the diagonal elements (n = m)
correspond to the stationary states themselves.



MATHEMATICAL APPARATUS 117

With the aid of the co-ordination (14) the above-men-

tioned correspondence with the Poisson brackets is read-

ily shown. The (nm) element of (27ri/h)(xy-yx) may
be written as a sum over a and ft of terms of the form

{2iri/h)
{%(n ,

n— a)y(n— a, n—a— ft)— yin, n— ft)x(n— ft,

n— a— ft)}, where a+ft — n— m. On adding and subtract-

ing x{n— ft, n—a — ft)y(n— a, n— a—

(

3) this becomes

n— a) — %{n— (3 ,
n— a— ft)]y(n— a, n— a— ft)

—
[y(n ,

n— (3)—y{n— a, n— a— ft)]x(n— 13 ,
n—a— ft)} .

Now in the region of “large quantum numbers” where

a, ft<£n,

x(n
,
n— a) — x(n— ft, n— a— ft)^hft — ,oJ

and

y(n— a, n— a— ft)

1

27rift

dypjn— a)

dw
1 dypjn)

2irift dw

since the harmonics of y are of the form ypir^e2*^™ by

equations (4). Hence the foregoing matrix element is ap-

proximately1

2 ±[a+0=n—m k — i

dXa(n) dyp(n)

dJk dWk

dy$(n) dxa (n)~

dJk dwk _

’

1 The summation necessarily extends into the region where the quan-

tum numbers are not large compared to their difference; hence for numeri-

cal agreement the matrix elements far removed from the diagonal must be

assumed negligible, since they correspond to high harmonics in the classi-

cal theory. The formal agreement, which is of most importance here, is,

of course, unaffected.
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which by the rule (12) for the multiplication of Fourier

amplitudes is the (n—m) harmonic of [xy\ expressed in

terms of the action-angle variables.

In the classical theory the Poisson brackets of canoni-

cally conjugate variables p k and qk satisfy the relations

Ipk Qi.]
=

(

1 when k— l

o when k^l
9 lP*9 Pl] =0 9 kh qi\=° •

The analogous relations will therefore be assumed for

conjugate variables in the quantum theory, that is,

piqi —qipk z

—
. 1 when k— l

27Tl

o when k^l

Pkpi— pipk— o
,

Mi =0 •

(is)

These “exchange relations,” by means of which h is intro-

duced into the equations, are of fundamental importance

for quantum mechanics. They correspond to the quan-

tum conditions of the theory of stationary classical mo-

tions, but whereas these conditions could be applied only

to a multiply periodic system, the present exchange rela-

tions must be regarded as generally valid for any motion.

In fact, as will appear later, they are necessary in order to

give meaning to the problem of integration of the equa-

tions of motion, which will now be established.

The canonical equations (i) of the classical theory, if

expressed in terms of the Poisson brackets, become

pk—[Bpk] , <ik=[Hqi] .
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The simplest assumption is to take over these equations

formally into the quantum theory, replacing the Poisson

brackets by their quantum analogues. We therefore as-

sume the equations of motion in the quantum theory to

be 1

h =
-l*

CHpk-pkH) ,

CHqk- qkH) .

(l6)

Clearly the equations (15) and (16) are not independent

of each other. Strictly speaking, it is only permissible to

assume equation (15) to be true at a single instant of

time. The exchange relations at any other time must

then be determined by the solution of equations (16) ;
how-

ever, a calculation shows that equations (15) are really

independent of the time.

The formal basis of the new mechanics is now com-

pleted; for any physical application, however, the form of

the Hamiltonian corresponding to the special dynamical

problem must be known. It is in general sufficient, in the

spirit of the correspondence principle, to assume the same

form as in the classical theory. The ambiguity as to the

1 The equations of motion may be written directly in the classical form

(x) without the use of the Poisson brackets if partial differentiation is de-

fined in a rational way for matrices. The relations

h df hdf
sr pj

~fp ' 53 dp=fi
~qf

for any function/ are then easily established from the exchange relations

(15). The more useful form (16) then follows at once.
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order of factors in a product which may occur here seldom

arises; when it does special considerations suffice to de-

termine the correct form.

The law of the conservation of energy and the Bohr

frequency condition are not contained explicitly in the

postulates of the theory; it is therefore necessary to show

that they may be derived from them. We commence by

forming a diagonal matrix W with elements

f TJi when
W(nm) = \

I o when

where the Tn are the term values of equation (5). The

time derivative of any quantity x may be expressed in

terms of this matrix by the equation

x=~ (Wx—xW) , (18)
rt

since the (nm) element of (27ri/h) (wx—xw) is

IT2W(nk)%(kin) — %(nk)W(km)] = 2ti(Tn—Tm)x(nm)
k

= 2Triv(nm)x(nm) —x(nm)

by equation (10). From equation (18) and the equations

of motion (16) it follows that Wft—pW= ffp—pH and

Wq—qW=Hq—qH, or

(W-H)p =p(W-H) ,
(W-B)q= q(W-B) . (18')

That is, the matrix W—H “commutes” with both p and

q, and it is readily shown that it therefore commutes with

(17)
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any function of p and q that can be represented as a power

series. In particular it commutes with H, so that

(W-H)H-H(W-B) =WH—HW= o
, (19)

which, by equation (18), means

H= o
, (20)

expressing the conservation of energy.

Equation (20) gives for the elements of H the infinite

set of equations v{nm)H(nm) =0. If v(nm) =0 only when

n=m, all the non-diagonal elements of H are zero and E
is necessarily a diagonal matrix. In this case, the system

is said to be “non-degenerate.” It may happen, however,

that v(nm) — o for ny^m; the corresponding elements ofH
are then undetermined and H is not necessarily diagonal.

The system is then said to be “degenerate.”

It follows further from equation (18') that

(Wn-Hn)p(nm)^p(nm)(Wm-Hm) ,

(Wn—

H

n)q{nm) == q(nm)(Wm-Hm) ,

i.e., Wn —En —Wm—

H

m for any value of n and m. There-

fore

H=W+C
,

where C is the unity matrix, multiplied by an arbitrary

constant. It is most convenient to put

H=W

.

(21)

The mathematical apparatus belonging to the particle

picture has been outlined above. Its physical interpreta-

tion is discussed in detail elsewhere, but the two most im-
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portant rules follow naturally at this point from the cor-

respondence principle.

1. The time average of a quantity represented as a

Fourier series is given by the terms independent of t.

Hence, for a non-degenerate system, the diagonal ele-

ments of the matrix representing any variable give the

time averages corresponding to the various stationary

states.

2. The radiation process, when the particle picture is

used, may be regarded as the emission of photons with the

spectral frequencies v(nm) accompanied by a simultane-

ous transition of the atom from the initial state with en-

ergy Wn to the final state with energy Wmy (Wn>Wm).

The intensity (rate of emission of energy) may then be

represented statistically as A(nm)hv(nm) where A(nm) is

the probability of spontaneous transition from state n to

state m with emission of a photon. On the other hand, the

classical theory gives for the average intensity correspond-

ing to the rth harmonic 2/2,(e
2/c3

)(27r)
A[rv]4 \rT \

2
• 2 where

er is the vector dipole moment of the electrons (r is the

vector with components x= ^P y= ^P q^\ z= ^P q[?\

k k k

9i
v:
\ ^k being the rectangular co-ordinates of the elec-

trons). On equating the expressions of the two theories

and replacing Fourier terms by matrix elements we ob-

tain for the transition probability

A (nm)
-

hv{nm) 3 c3
[2t:v

(

nm)Y\ r(nm)
\

The justification of this second rule is not obvious since

the Maxwell theory also requires reconsideration. How-
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ever, equation (22) determines only the time average of

the emitted radiation, and it has been shown in chapter

v, § 4, that the Maxwell theory is competent to furnish

this information exactly.

§ 2. THE TRANSFORMATION THEORY

The mathematical scheme of quantum mechanics has

been derived in § 1 in a way which displays its analogy to

classical mechanics; it is not, however, as yet in an easily

usable form In this section it will be shown that the solu-

tion of a dynamical problem in the quantum theory is

equivalent to the principal axis transformation of a Her-

mitian form or tensor. This provides the basis for a prac-

ticable method of solution and shows the consistency of

the conditions imposed.

Suppose a set of Hermitian matrices p k , qk can be found

which are independent of the time, satisfy the exchange

relations, and make H(p
, q) a diagonal matrix. The dy-

namical problem is then solved, for if the matrices are

provided with the time factors e
n

,
where Hn

and Hm are the diagonal elements of H, it is readily seen

that the equations of motion (16) are satisfied. If p
(

k \

q
(

£
o)

is any set of matrices satisfying the exchange relations,

the transformations

t*= S- xP?S, qk= S-'q?S, (23)

where S is any matrix, give a new set likewise satisfying

the exchange relations. This is seen algebraically on sub-

stituting equations (23) in the exchange relations for the

new variables; in a similar way it is easily proved that if/
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is any function of the p

$

and q^
o) that can be written as

a power series, then

/(#*, ?*) =J{S~'pfS , S-'qTS) = S~'f{pf, <ff)S . (24)

Since special Hermitian matrices satisfying the exchange

relations can be found, the problem reduces to that of

finding a transformation function 5 such that

S~ JH(pf,qf)S=W , (25)

where IT is a diagonal matrix*

The transformations (23) are analogous to the ca-

nonical transformations of classical mechanics; but they

have also a geometrical interpretation of great importance

if the matrices of the quantum theory are interpreted as

tensors in a unitary space of infinitely many dimensions

(Hilbert space). This not only furnishes an analytical

method of representing the transformations (23) and

equation (25) but also provides a convenient language for

the physical interpretation of the theory, as shown in

chapter iv, §1. For present purposes a purely abstract

formulation will suffice.

Let z4
o)

,
* • • • }

be an infinite set of unit orthog-

onal vectors. The space used is that of all vectors

*=

>

n

where the components 4o) are complex numbers. A tensor

q then expresses a linear relation between two vectors ac-

cording to the equations

t=qs, or .

m
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Consider now a transformation from the foregoing co-

ordinate system U0(u[°\ u{

2
°\ . . . .) to a new co-ordinate

system U(u^ u2 ,
.... ), the new vectors being given in

terms of the old ones by the linear equations

un='^S(mn)u%! . (26)

m

The components tn of any vector t and q(nm) of any ma-

trix q in the new system are then given by the equations

tn= , (27)

m

q(nm) = ^^S~ x (nk)q(o) (kl)S(lm)
, (28)

k, 1

where S~~
x

is the matrix of the transformation tn=

inverse to equation (27). [S is assumed to be
m

non-singular.] Of special importance are the so-called

“unitary” transformations, i.e., those which leave in-

variant the quadratic form tnt* which is the analogue
n

of distance in unitary space. It is readily verified that for

such unitary transformations

^S(nk)S*(mk)= y^S(kn)S*(krn) = Snm ,

k k

which means that S-I =5 *, or

SS* = 5 *5= 1. (29)

They are the analogue in unitary space of rotations of

rectangular co-ordinate systems in real, three-dimension-

al space.
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It is now seen that equations (23) are of precisely the

form of equations (28), by virtue of the rule (12) for

quantum multiplication; pi, qi may therefore be regarded

as the same matrices or tensors as pf, q'k expressed in a

new co-ordinate system U, the new co-ordinates being re-

lated to the co-ordinates in the original system U0 by

equations (27). Equation (25) then expresses the condi-

tion on the transformation matrix S that in the new sys-

tem the tensor H is in the diagonal form—i.e., the co-

ordinate vectors of the new system are the principal axes

of H. It is sufficient to consider only unitary transforma-

tions [5 satisfying eq. (i8)] since under these conditions

it is well known that the principal axis transformation

problem, at least for finite matrices, always has a solution.

A word is necessary as to the notation. In general it is

not expedient to distinguish matrices in different co-

ordinate systems by new symbols; they are more con-

veniently characterized by using a distinguishing letter

for the indices of the components in each co-ordinate

system. Different numerical values of the indices will be

indicated by primes; thus p(l'l"), say, represents the com-

ponents of p in the “l” system and p{a!a") the components

in another “a” system of co-ordinates. The first of equa-

tions (23), for example, is to be written

#(o'o")=22S-W)p(lT)S{ra,‘") .

v l"

The indices of the transformation matrix S then refer

naturally to different co-ordinate systems.

The solution of a quantum-mechanical problem given

by the equations of motion (16) and the exchange rela-
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tions (15) thus reduces to the problem of the principal

axis transformation of the Hermitian matrix H. It re-

mains to state briefly the method of solution, which is a

well-known one. The equation (25) may be written

HS-SW= o
, (30)

which gives for the elements of S the equations

a.")W(a"a') = o

V' a"

I, \

a'=i, 2, /
’

or, since W is diagonal, an infinite set of homogeneous

linear equations

2 -E{l'l")S{l"a') -S{l'a')Wa'= o (/'=!, 2,....), (31)

l"

for the determination of the elements of any column of the

matrix S(/V). The ITVs, which appear as parameters,

are also determined, and, in fact, independently of the

S(l
f
a'), since the equations (31) will have a solution when

and only when the determinant of the left-hand member

is zero, that is, when the WJs are solutions of the alge-

braic equation

H(ii)-W H( 12) H(13)

H(2 1) H(22)-W H(23)

ff(3 1) 8(32) H(z3)-W = 0 . (32)
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The roots Wa* of this equation are thus characteristic

values of equation (30) or equations (31) and are always

real. They are the diagonal elements of W and therefore

give the energy levels of the system; when the roots of

equation (32) are multiple the system is degenerate, for

there is then coincidence of frequencies by equation (7).

To each Wa ' corresponds a characteristic solution

Ca'S(ia
r

), Ca'S(2a
/

), . . . . ,
of equations (31) and hence

a column of the matrix S
,
the arbitrary constant Ca> oc-

curring because of the homogeneity of the equations (31).

In case the system is not degenerate it is readily seen that

any two characteristic solutions are orthogonal to each

other, i.e.,

'^Ps(l'a')S*(l'a
/
') =0 when a' 9^ a" .

The relation (29) is thus satisfied for the non-diagonal

elements. It may also be satisfied for the diagonal ele-

ments by proper choice of the CV, although this “nor-

malization” obviously determines only the absolute

magnitude of the Ca>, There is therefore always an un-

determined factor of absolute magnitude one common

to the elements of each column of S. In case of degeneracy

there is a further indeterminateness, but equation (29)

may always be satisfied.

From the transformation function S the co-ordinates

and momenta which form the solution are given by equa-

tions (23). The extended discussion of the physical in-

terpretation of S is, however, reserved for § 5.

In the preceding it has been tacitly assumed that

theorems for finite matrices and sets of equations are true
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for the infinite ones of quantum mechanics. This may be

directly justified only under certain conditions, but the

more rigorous treatment shows that the results of the

formal treatment above are essentially correct .

1 There is

one important distinction, however, in the case of infinite

matrices: The characteristic value “spectrum” may con-

tain a continuous sequence of values as well as the dis-

continuous one hitherto exclusively considered. In the

case of the energy this accounts for the existence of con-

tinuous optical spectra. The occurrence of continuous

characteristic values also means that in certain co-

ordinate systems the elements of the matrices will have

continuously variable indices, or indices discontinuous in

a certain range and continuous in another. Our matrix

relations must accordingly be extended to include this

case. The methods of Dirac2 will be used for this purpose;

though somewhat formal in character they have the ad-

vantage of great clarity and may be rigorously justified

in all cases which occur practically.

In the first place sums must be replaced by integrals in

a range where the indices are continuously variable, the

elements becoming functions of two sets of variables.

Thus when the range is wholly a continuous one the

product rule, for example, becomes

pq(nm)=Jdk p(nk)q(km)
,

while in the case of mixed ranges there will occur a sum

and an integral. To represent the unit matrix in the con-

1 In many practical problems, howler, a principal axis transforma-

tion with a finite number of variables suffices, as in the perturbation

method (§4).

2 Proceedings of the Royal Society
,
A, 113, 621, 1927.
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tinuous case Dirac has introduced a function 5 (£), cor-

responding to 8nm defined by the following properties:

£$(£)= o
,

so that 6(£) — o for £3^0,

and

5 ( -£)=$(£) ,

i
,

(33 )

(34)

when the value zero lies between and £ 2 . It is thus a

function with a singularity at £ = o and is only possible as

the limit of a sequence of functions. From the foregoing

properties it follows readily that

X
+oo

f(£)8(a-£)d%=f(a) , (35)
•CO

(a—£)d£=f f
(a)

, (36)

where /(£) is any regular function and 8'(£) == (d/d£) 5 (£).

Equation (35) results from an integration by parts. Fur-

thermore, since

o

when a ^ b and

fdbf8(a-Q8(£-b)dt = f8(a-t)d£f8(S--b)db = 1
,

<$(a— £) 5(£— b)d%= 8(a— b) (37 )
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since the integral has all the properties of the 5-function

of a— b.

The elements of the unit matrix in the continuous case

may be expressed in terms of the 5-function, for 5 (a'— a")

has, by equation (37), the property that

J~5(a/— OL
f//
)x(a" /

a
f/)da

/n = x(a' a")
. (38)

Hence

i(a' a") =5(a/ — a") .

A diagonal matrix with continuous indices is one of the

form q(a'a")d(a — a!
r

). The extension to multiple indices

causes no difficulty; the unit matrix, for example, becomes

i(a
/ a")=5(aI'-af')5(a2'-a'0 5(a}- a}')

and may again be written simply 5 (a/— a").

For the quantum theory those co-ordinate systems in

which quantities other than the energy take the diagonal

form are also of importance. In such a system it often

proves convenient to replace the indices of all matrices by

corresponding diagonal elements of matrices which are

diagonal in that system. Rows and columns are thus

designated by characteristic values of the matrices which

define the co-ordinate system. This is equivalent to re-

placing quantum numbers by the energies of the cor-

responding stationary states in a system of one degree of

freedom; by the energy and, for example, the angular

momentum in a system of two degrees of freedom, etc.

In general, if the matrices x x ,
x2 ,

. . . . ,
xj have the

diagonal form, the matrix elements of q will be‘written

q(x'x")=q(x'xx
f

2 xx x2 .... x'/)
,
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the primed letters denoting characteristic values of the

corresponding matrices; in particular, the diagonal mat-

rices x
,
when the indices are continuous, have the form

x(x'x")=x'd(xt-xt')8 (4-4') S(x}-x}') • (39)

The question naturally arises as to what matrices can

simultaneously have the diagonal form in a given co-

ordinate system. The answer is well known from the

theory of Hermitian forms, and is highly significant for

the quantum theory: Any set of matrices all of which

commute with any other of the set can be simultaneously

brought to the diagonal form by a unitary transforma-

tion. Thus it will always be possible to find a co-ordinate

system in which the position co-ordinates q t .... qj are

diagonal, but if the exchange relations are satisfied the

momenta p x .... pf cannot also have the diagonal form.

§ 3. THE SCHRODINGER EQUATION

The admission of continuous matrices into the mathe-

matical scheme permits a new formulation of the princi-

pal axis transformation problem. If, namely, the original

co-ordinate system in which the exchange relations are

satisfied is taken to be one in which the qk are continuous

diagonal matrices the equation determining the transfor-

mation function S to a system in which any function F
is diagonal becomes a partial differential equation, which

is the analogue of equations (31). While a rigorous justi-

fication of the method used here (that of Dirac1

) is diffi-

cult, the results may be confirmed by more exact, though

also more cumbersome, methods.

'Ibid.
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Since the original co-ordinate system need only be one

which the co-ordinate matrices are diagonal and bears no

necessary relation to any special dynamical problem,, we
may assume for the qk the general diagonal form

qk==qkd(q[-q") Kq'f~q7) , (40a)

the indices being designated by the characteristic values

qi of qk . To represent the conjugate momenta a set of

matrices must be found which satisfies the exchange rela-

tions (15) with the foregoing q k . A possible set is obtained

by taking

8(qLi-qk-i)d(qk+i-q'k+i) >

for it may be shown by calculating pkqi— qipk that the

exchange relations are then satisfied. The proof for one

degree of freedom is as follows: The (q'q
rr

) element of

pq-qpis

—
. Cdq"W (?'•-<T)rKq"'-q")-q'K<]! -*")*’ iff"- ?")]

2mJ

The first term, on integration by parts, becomes

JVW-j'") -~r, [q'”o(q"'— q")]

=/dq"'[q"'8’(q'"- q")8(q'- q'")+8(q
f - q’") 8 {q"> -q")] .

Therefore,

+JL CS(g>-q»')8(q'"-q"W" .

2TTlJ
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The first integral vanishes by equation (33), while the

second is Qi/2iri)h{q'—q
f
') by equation (37). Hence

(pq-qpWq") = (-•)*(?'-?") = (“•) '(J'?")

and the exchange relations are satisfied. The extension to

several degrees of freedom follows without difficulty.

Consider now the general problem of transforming any

function F(j>, q) to the diagonal form by a unitary trans-

formation S. As in the discontinuous case S is essentially

determined by equation (25), which now becomes

S-'FS = F,

5(F'-F") ,

the indices in the new system where F is diagonal being

denoted by F' and F". Again this may be written in the

form of equation (30)

:

FS= S[F'8(F'-F")}

or

jF(q'q")S(q"F')dq" = S{q'F')F' , (41)

which is an integral equation corresponding to the infinite

set of linear equations (31). This, however, becomes a

partial differential equation when the particular values of

pk, q>. given by equations (40) are substituted in the left-

hand member. Carrying out the integration, using the

properties of the 6-functions, gives

fF(Pk, qk)(qW')SW'F')dq"=F(A ~ ,
q^S(q'F')

, (42)
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where F([h/ 2iri\ [d/dqk], qk) is the operator obtained from

F by the substitution

Pk ~>
h d

2TTi dq'k
’ qh-^q’k (43)

Only the proof for one degree of freedom need be given.

For the special cases F=q and F= p the result follows at

once, since by equations (36) and (35)

q")S{q"F')dq"-.
k dS(q'F')

f ''**
2Tri dq'

ft
q'5(q'-q")S(q"F')dq'' = q'S(q'F') .

Since all functions which need be considered can be built

up by multiplication and addition from p and q, it only

remains to show that if equation (42) holds for F T

and F2 it holds for F 1+F2 and FtF2 . That it holds for

F z+F 2 is trivial. For F,F2=fF^q'q") F{q"'q")dq'" sub-

stitution in equation (42) gives

tfF1{q'q"')dq’"F2{q’"q")dq"S{q"F’)

=jFI (.q

,
q"')dq

,

"f*,(?"'q")S(q"F’)dq” ,

-Sww"f,(F , r)sw"F)

.

2ici dq'

and the theorem is therefore proved.
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The required transformation function S(q'F') must

therefore be a solution of the partial differential equation

F[£i£..tiWn-rswr). (44)

in which F' is a parameter, corresponding to Wa> in

equations (31) of which equation (44) is the analogue.

Here also there will be only certain discrete values or con-

tinuous ranges of F for which a solution is possible; these

characteristic values give the diagonal elements of F. The
conditions that the transformation be unitary(5*= <S'“

I

)

are of importance in determining the character of the

solutions of equation (44). When S is continuous in both

indices they may be written

$S*{q'F')Stq'F")dq' = 5{F'-F")
, (45)

jS*(q'F')S(q"F')dF' = 5(q'-q")
, (46)

analogously to equations (28). There are corresponding

summations when the characteristic value spectrum con-

tains a discrete part.

The mathematical problem just treated is a very gen-

eral one. That there are corresponding physical ones will

appear after the extended physical interpretation of the

transformation function has been given in § 5. For the

present we only note that the foregoing method, when
applied to the Hamiltonian H\ yields a solution of the

equations of motion.

When H is substituted for F in equation (44) the re-

sulting differential equation is the Schrodinger1 equation,

1 E. Schrodinger, Annalen der Physik, 79, 361, 489, 1926
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originally discovered in an entirely different manner. The
corresponding transformation function S(q'H') is in this

case customarily written twiq)- The Schrodinger equa-

tion is then

H
(Jv~iiqk ’

i^w(q)-Wipw{q) = o (47 )

and its characteristic values given the energy levels of the

system.

The solutions ipw(g) form the columns of the transfor-

mation matrix, which should be compared with the S of

§ 2. Both represent transformations to a system in which

the energy is diagonal—in the present case, however, the

initial system is a particular one in which the co-ordinates

are diagonal, corresponding to a particular choice of pt\

q'k -in § 2.

In the typical case of a discrete characteristic value

spectrum the orthogonality conditions (45) betame

f\p%r'(q)pW" (q)dq= o (48)

when W'^W",

f\ 4'w(q)\
2dq=i . (49)

Equation (49) is in general equivalent to boundary con-

ditions, and the orthogonality of the characteristic solu-

tions $w(q), which usually follows, then assures the valid-

ity of equations (48). As in the case of the transforma-

tion matrix S of § 2 there remains in each “column”

\pw(q) an undetermined phase factor el<Pw not fixed by the

normalization (49).
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The co-ordinate and momentum matrices in the system

in which the energy is diagonal are, by equations (23),

POV'W") =j~irwY ~
d

W
q

" dq , (50)

q(W'W")=jtwiq)qtw<q)dq . (51)

Equations (47), (50), and (51) constitute the most ef-

fective mathematical method for treatment of the dy-

namical problems of quantum mechanics, but they con-

tribute nothing new to the physical interpretation. Spe-

cial considerations are necessary to make clear the physi-

cal meaning of the transformation matrix (cf. § 5).

§ 4. THE PERTURBATION METHOD

A description of the principal features of -the perturba-

tion theory in quantum mechanics is necessary at this

point. This method may be used when the Hamiltonian

H can be developed in terms of a small parameter X in

the form
H~H0+\H1+\*H2+ . . . . , (52)

and the solution of the problem corresponding to the

Hamiltonian H0 is known, i.e., when the matrices p and q ,

and any function of p and q ,
are known in that system

in which H0 is diagonal (IZ0-system) . In the following the

letter H will be used for the energy matrix in this co-

ordinate system, while W will stand for the energy matrix

in the system in which the complete Hamiltonian is

diagonal (ZT-system). Corresponding to equation (52) W
may be written in the form

W=Wo+\W1+KW2+ (S3)
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where W0=H0 . The required transformation function

which leads from the flVsystem to the H-system may also

be written

S = S0+XSx+XaSa+ , (54)

and S will be unitary to zeroth approximation if

•SoSo* = 1 • (55)

A set of equations will now be found from which S may
be determined. As in § 2, S must satisfy the equation

I75 = 6TE, W being diagonal; substituting the develop-

ments (52), (53), and (54) in this equation and equating

coefficients of equal powers of X gives the equations

HoSo^SoWo,
H0S1~S1H0=SoWI ,

HoS2- S2Ho+H2S2- S1W1 =SoW2 ,

; > (5 6)

HoSr-SrHo+FriSt .... Sw ,
Hx Hr) =S0Wr ,

which may be solved in sequence for 50 ,
S l9 ,

and

Wo, W 1} ... .

The first equation gives, for the elements of S0 ,

So(nn)[Ho{nn)—H0{mm)] = So(nm)hv0(nm)=o , (57)

where the v0{nm) are the frequencies of the unperturbed

system. 1 A distinction must be made at this point be-

1 For simplicity it is assumed that all matrices are discontinuous in

their indices. The method is equally applicable for continuous indices

and hence for the Schrodinger equation.
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tween non-degenerate and degenerate unperturbed sys-

tems. In the former case [v0(nm)^o when n^m] it fol-

lows at once from equation (57) that S0 is a diagonal

matrix; in the latter the non-diagonal terms of 50 do not

necessarily vanish. Since the treatment of the two cases

differs from here on it will be assumed at first that the

unperturbed system is non-degenerate.

When S0 is diagonal, equation (55) requires \S0 (nm)\ =

r; hence, disregarding the undetermined phases always

present in S, we may take S0 = x. The second of equations

(56) then becomes

or, for the elements

hv0(nm)Si{nm) JrH1 (mm) = Wi(nm)8nm (58)

For the diagonal elements this gives the determination

of the perturbation energy to first approximation:

WI(nn)-Hl(nn) . (59)

When n^m equation (58) determines the non-diagonal

elements of S x ; the diagonal elements of are unde-

termined by equation (58) but the condition NN*=i is

satisfied to first approximation if they are taken to be

zero. Hence

Siinni) =
E1(nm)

hvoinm)
(l finm) *

The similarity of these results to those of the perturba-

tion theory in classical mechanics will be noted. In par-
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ticular equation (59) corresponds to the well-known clas-

sical theorem that the perturbation function is to first order

the average of the perturbation energy, since the diagonal

elements of are its time average. The equation may ac-

cordingly be written

W1=H1 .

The remaining equations in (56), when treated in the

same way, give

Wr(nn)=Fr(nn) ,

Sr(nm) = (1-M ,

each Fr being determined by the equations preceding the

rth one.

If the unperturbed solution is degenerate it no longer

follows from W0 S0=S0 W0 that S0 is diagonal. When, for

example, W0(n+i) =W0(n+2) = .... =W0{n+k), equa-

tion (57) shows that S0 can still contain elements that

correspond to transitions between the states n+ 1, n+ 2,

. . . . ,
n+k. The second of equations (56), however, pro-

vides a system of homogeneous linear equations giving

these non-vanishing elements of S0 and at the same time

W x . Again forming the time mean over the unperturbed

motion (i.e., picking out the rows n and columns m for

which the corresponding v{nm) vanish) gives the equation

HiSo =S0W1 , (60)

which provides a system of homogeneous linear equations

precisely analogous to equations (31). As there Wx may
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be found independently of S0 from the so-called “secular

equation,”

H^n+i, n+i) — Wt . . Ih(n+i, n+k)

Hx(n+2, »+i) . . Hi(n+2, n+k)

[

=o . (61)

n+i) . . Hx{n-\-k, n+fy — Wx

The roots give the elements of W x and the corresponding

linear equations determine S0 except for a phase factor in

each column. From here on the calculation may be carried

out as for a non-degenerate system.

§ 5. RESONANCE BETWEEN TWO ATOMS: THE PHYSICAL

INTERPRETATION OF THE TRANSFORMA-
TION MATRICES

The completed scheme for the interpretation of the

mathematics of the quantum theory depends on certain

assumptions as to the physical meaning of the transforma-

tion functions. To illustrate the nature of these assump-

tions and to make them plausible a simple problem will

first be discussed—that of the interaction of two atoms in

resonance. 1

Consider two atoms, I and II, with the characteristic

value spectra Wi(n) and Wu(i) which have a common
characteristic frequency, so that, for instance, vjinm) =
vniik) or Wj(n) —Wj(m) =Wn{i) —Wu(k) ;

they are thus

in resonance. An energy interchange can then occur be-

tween the two atoms, even if the coupling between them

1 W. Heisenberg, Zeitschrift fur Physik, 40, 501, 1926.
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is very weak, the interaction taking place as follows:

Atom I goes from the state n to the state m, giving up

energy hv(nm), while atom II takes up the same energy

hvinm)
= hviik) in going from state k to state i, the process

being reversible.

If the uncoupled atoms are considered as the “un-

perturbed” system the interaction energy H z may be

treated as a perturbation by the method of § 4. A state of

the combined atoms, in the system in which Wj+Wn is

diagonal, may be specified by two integers (nk), the first

giving the state of atom I, the second the state of atom

II. The states (nk) and (mi) of the unperturbed system

then have equal energies by virtue of the relation

Wo(nk) = Wi(n)+Wu(k) = Wi(m)+ Wu(i) = W0(mi) (62)

resulting from the equality of frequencies; the resonance

thus introduces a characteristic degeneracy. The secular

equation for the determination of the perturbation W x in

the energy may be set up as in § 2 by picking out the ele-

ments of the interaction energy H x (nk; mi) for which the

frequencies v(nk; mi) ~ (1/h)\WQ(nk)+W0(nii)] vanish by

equation (62). This gives, corresponding to equation (61),

Hx (nk; nk) —Wx Ex(nk; mi)

Hx (mi; nk) Hx (mi; mi) —Wx

The two solutions of this quation are the perturbation

energies W x (a) andW x (b) of the two states of the coupled

system which replace the states (nk) and (mi) of equal

energy for the uncoupled system. (The more symmetric

notation W(nk; mi), etc., is likely to lead to confusion,
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since there is not one-to-one correspondence with the un-

perturbed states.) To each root of equation (63) corres-

ponds a column of the transformation matrix S (obtained

by solution of the linear equations) which will be of the

form

S(nk; a) = s(nk; a)et<f,a

S(mi; a) a)ei<f>*

SM; 1
iolW m

S(mi; b)—s(mi;
J

The 0’s are real quantities undetermined by the “nor-

malization” SS*= 1. The orthogonal matrix

s(nk; a)e^ sink; b)ei<f>*

s(mi; a)e i(f>° s(mi; b)ex4>h

is thus the zeroth approximation to the transformation

function leading from the system in which the energies

W

1

and Wu are diagonal to the system in which the total

energy Wi+Wn=W is diagonal.

It may be noted parenthetically that in the case of two

equivalent atoms resonance will always occur. This

special case is obtained from the foregoing by setting i=n

and k = m; it is then readily shown that

Hxinm; nm) mn)
,

Ht {nm; mn) ~Hx(mn; nm)
,

when the interaction is symmetric in the two systems.

Since Hz is Hermitian the non-diagonal terms in the de-

|

for Wi{a) ,
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terminant of equation (63) are real, and the solutions are

seen to be

W1(a)=EI(nm; nm)+H1{mn; nm)
,

Wx (b) —Hx(nm; nm)—Hl(mn; nm) .

s ’s the calculation

(66)

We return now to the general case.

We shall next discuss the further physical information

that may be obtained from these results. Consider, for

instance, the question of what may be said in the quan-

tum theory as to the energy of atom I alone as a function

of the time. Classically there would occur between two

coupled oscillators of equal frequency a periodic and har-

monic energy interchange with a frequency proportional

to the coupling force; the energy of one of the oscillators

would be given by a curve like that of Figure 19a. In the

quantum theory, on the other hand, it is to be expected

that the energy of atom I has either the value Wi(n) or

with a probability of transition between these

values depending again on the strength of coupling; ffj(l)

should therefore be represented by a curve like that of

Figure 196. To be sure, this curve cannot be calculated in

the quantum theory, nor can it be experimentally de-

termined; nevertheless the rules so far obtained for the

For the corresponding matrix of the

gives, after normalization,

(a) (*)

I I

V2 l/2

I X

V2 V 2
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physical interpretation of quantum mechanics are suffi-

cient to permit a calculation of the time mean and the

mean-square fluctuations of Hj{£) or any function ofHx(t).

The calculation of the

timemean of any function of

Hj{t) may be made as fol-

lows. By rule i of § i the

diagonal elements of the

matrix representing any
quantity give directly the

time averages in the corres-

ponding states. The aver-

age f(Hz) a in the state a

may therefore be calculated

in terms of the diagonal ele-

ments f{Wx{n)) md f(Wx(m)) oif(Hx) in the system in

which Hj is itself diagonal (the unperturbed system) by
making use of the transformation function N of equation

(64):.

f(Hj) a= [f(Hz)](aa) —S*(nk; a)f(nk; nk)S{nk; a)

+S*(mi; a)f{mi; a) >

-\S(nk; a)\
2f(Wi(n)(n))+ \S(mi; a)\ 2f(Wx(m)) .

* - J

(67)

This is precisely the expression for the time average which

would result from the assumption that f(Hx) can have

only the values f(Wz(n)) and f{W1{m)) and that these

values occur with relative frequencies
|
S(nk; d)\

2 and

)
S(mi; a)

|

2

?
respectively. Sincef(Wj(n)) and/(lTj(m)) are

the elements in the system in whichf(Hj) is diag-

onal, the first part of the foregoing assumption is equiva-
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lent to the hypothesis that the possible values of / are

the diagonal elements of its matrix in the system in which

it is itself diagonal. The second part, on the other hand,

is a consequence of supposing that \S(nk; a)
|

2
is the rela-

tive probability of finding the value f(Wj(n)) for f(Hj)

when the total system is in the state a . (The index (nk)

corresponds to the value f(Wi(n)) since it is the label of

a stationary state in the system in which / is diagonal.)

The interpretation as relative probabilities is consistent

because by the normalization \S(nk; a)\
2 +\S{mi; a)|

2 = i.

While a special problem has been treated here the

formal relations are the same in the general transforma-

tion problem. Thus if S(a'/3') is the transformation

matrix from a system in which any quantity a is diagonal

to a system in which /3 is diagonal 1 the time average of

/(a) will always appear in the form (67); i.e.,

a'

=2 \S(a’P) | /.(«'«')

a!

is the time average of /(a) corresponding to the state /?'.

It is therefore reasonable to generalize the assumptions

made above in a special case and to make the following

hypotheses as regards the physical interpretation of the

transformation scheme:2

The values which a quantity a can take on are given by

1 The practice of labeling rows and columns by the elements of the

diagonal matrices is used here again.

3 P. Jordan, Zeitschrift fur JPhysik, 40, 809, 1927; 44 > 1927; P* A. M.

Dirac, Proceedings of the Royal Society
,
A, 113, 621, 1927
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its characteristic value spectrum
,
i.e., by the elements of its

matrix in the system in which it is itself diagonal .

If S{afi
f

) is the unitary transformation matrix from a

system in which a is diagonal to a system in which /? is

diagonal then

|S(a'/3')|
2

(68)

is the relative probability offinding the value a of a when it

is known that the value must be ascribed to (5.

The foregoing assumptions of course apply equally well

to the case of continually varying indices and hence to the

case in which S is found by solution of a Schrodinger

equation.

The detailed discussion of the physical interpretation

of the statistical elements thus introduced into the theory

will be found in the body of the text and especially in

chapter iv. Here it will only be noted that we must add

the express condition that the experiment under con-

sideration actually affords a determination of a. At first

sight this condition appears trivial; it is, however, essen-

tial, for an application of the foregoing interpretation of

the quantities (68) without consideration of the experi-

ment leading to the measurement of a gives rise at once

to logical inconsistencies.

Having established the basis for its physical interpreta-

tion, we proceed to the further development of the gen-

eral transformation theory.

The elements of the transformation matrix 5 give prob-

abilities only on forming the squares of their absolute mag-

nitudes; they may themselves be called “probability
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amplitudes.” Carrying out successively a transforma-

tion from the system a (the system in which a is diagonal)

to a system /3 and then a transformation from the system

/3 to the system 7 gives, since transformations combine

by the rule for matrix multiplication,

S(aV)=25(aW03Y) - (69)

Thus quite independently of y the probability amplitude

S(a y
r

) can always be represented as a linear function of

the set of probability amplitudes S (a//3
;

) . The probability

amplitude for finding a regardless of the predetermined

quantity y
f

,
which may be written simply S(a), is there-

fore, even in the most general case, a linear function of

the elements of the transformation matrix S(a'fJ') 9
and

the system /3 may be chosen arbitrarily. In particular f3

may be taken to be the energy, and S(a ) can then always

be expressed in the form

S(a') == ^ ^cw'Sw'ja')
, (7°)

W’

where the cw> s are constants and S w'(a') is the transfor-

mation matrix to the system in which W is diagonal.

While the probabilities Sw'W) are always constant in

time, referring to a stationary stateWf

,
this is not true in

general for l-S^a ')!
2

(i.e., when something other than the

energy is specified). The proper time dependence of 5(a
/

)

may be deduced from the following considerations:

According to (9) each matrix element x(nm) has a time
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~V ( Wn— Wm)t .

factor e
n

in the system in which the energy

is diagonal. Since on transforming to this system from

any other system

%(nm) — S*(<Ln)x(cL'a'
f
)S(<L

nm) , (71)

a'a"'

the correct time dependence will be obtained by providing
_2TZ

each element S(an) with the time factor e
h

. This

is possible since hitherto S(an) has contained an arbitrary

phase factor of absolute magnitude 1 ;
from now on it will

be understood that S(an)~SwW) contains this time

factor.

The most general probability amplitude S(af)
}
since it

can be expressed in the form (70), must satisfy the equa-

tion HS—SW = o determining the SW'(of). Since SW=
-~{h/ 2iri) (dS/dt) when 5 has the time factor introduced

above, the equation for 5(a') becomes

In particular taking a to be a co-ordinate q, this becomes

the wave equation of Schrodinger,

H Hq)+.A
djKj)

27ri dt
(73)

Characteristic solutions of the form \pwf
(q) — uwf

{q) £
h

correspond to the elements Sw'fa') with the time factor,

and by (70) the most general probability amplitude is
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As an example of the application of equation (72) con-

sider again the example of coupled atoms. Suppose a

measurement at time t — o gives the result that atom I is

in state n and atom II in state k. Equation (72) then gives

the variation with time of the matrix S given by equation

(64), in which the time is contained only in the phases

(pa and <pf Substitution in equation (72), since the matrix

5 of the constant amplitudes satisfies the equation Hs+
sW = o, gives

h__ dpa

27ri dt
= -Wa ,

h

27ri

Hence<pa = — 2wi/h-Wat+ Const, and <pt,
= — 2iri/h*Wbt+

Const, and the characteristic solutions of equation (70) are

— 27r%
Wat

S(nk; a) =Const. Xs(nk; a)e h
,
etc. The general prob-

ability amplitudes are then by equation (70),

S(nk)=cas(nk; a)e h +Cbs{nk; b)e h
b

,

- Wat ~ Wbt

S(mi)=cas(mi; a)e h +Cbs(mi; b)e h
,

where the c’s are constants which may be determined by

the initial conditions. Since in this case the initial condi-

tions are S(nk) = 1, S(mi) =o, and the determinant of the

s 's is i, we readily find

_ 2irl wa i _— wbt

S(nk)=*s(mi; b)s(nk; a)e h — s(mi; a)s(nk; b)e h
,

[

— 2sJw t — 2X1w zl

e h
a — e A

j .
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For the special case of equivalent atoms, where s has

the form (66),

From this follow the probabilities

\S(nm)
|

2 = §£i+cos
2

^

\S(mn) = — cos
2

^ (Wa
—

•

These formulas give the probabilities of finding (mn) or

(mn) as functions of the time. As Wa—Wb is small to the

order of magnitude of the interaction energy of the atoms,

the probabilities vary only slowly. Shortly after the first

measurement (i e
,
for small values of t) it is extremely

probable that we find again the configuration (nm). If,

however, the second measurement is made exactly at

time t =%h(Wa—Wb), the result will certainly be the

configuration (mn) . All of these considerations are valid

only when the system actually remains unperturbed in

the interval between the two measurements; that is,

actually remains governed by equation (72). This condi-

tion is, of course, quite trivial. It is specially mentioned

here, however, as it is of decisive importance for the con-

sistency of the theory.

The interpretation of the transformation matrices as

probability functions just sketched gives a complete

scheme for the application of the mathematics of the

quantum mechanics to all physical problems.
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§ 6. THE CORPUSCULAR CONCEPT EOR RADIATION

The corpuscular theory of radiation is too well known
in its general outlines to require extended discussion at

this point. It is essentially Einstein’s theory of light

quanta according to which radiation can be regarded as

the action of rapidly moving particles (quanta) whose

velocity is always c. Energy E and momentum p are re-

lated by the fundamental equation

E= cp
, (75)

and the color is given by the quantum relation

E
v

h *

Light quanta can appear and disappear, so that in con-

tradistinction to the particle picture of matter their num-

ber is variable. No interaction takes place between differ-

ent light quanta (when gravitation is disregarded)
,,
but

the interaction between light quanta and matter is re-

sponsible for the phenomena of absorption, emission, and

dispersion.

§ 7. QUANTUM STATISTICS

Consider a system of n identical particles that are en-

tirely indistinguishable from each other (e.g., electrons or

photons). For simplicity it will be assumed that the sys-

tem has only a discrete characteristic value spectrum,

and the interaction between the particles will at first be

neglected. The problem may be treated by first deter-

mining the possible states and corresponding character-

istic functions pa(r) for the individual particles and then

considering the distribution of the n particles among these
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states. In order to treat such a statistical distribution it is

necessary to define what constitutes a distinct state of

the system.

In classical statistics (Boltzmann statistics) a distribu-

tion of n particles among n different states has a relative

probability nl, since obviously every permutation of the

n particles represents an independent realization of the

given distribution. In the quantum theory this means

that every distribution of n particles among n different

states corresponds to an nl-iold degenerate term of the

total -system. The corresponding nl linearly independent

characteristic functions are obtained by performing the

nl permutations of the rpk with the a, fixed, in the ex-

pression

iKfa • '/'«n(rpn) . (76)

Instead of the functions (76) any other system of nl

linearly independent linear aggregates may of course be

used to describe the w-body problem. One is led to such

a system of functions, for example, on attempting to treat

the interaction of the particles as a perturbation. Among
the nl linear aggregates thus obtained two are singled out

by a particularly simple structure:

N ’KOn) , (77)
All

permutations

and the determinant

I
(n)

|
(i,k= 1,2, ,»). (78)
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The first is unaltered by any interchange of two particles

and is called the “symmetric characteristic function” of

the system; the second only changes its sign on such an

interchange and is called the “antisymmetric character-

istic function.” If it is assumed that the t/'/s are normal-

ized, then it is readily shown that the characteristic func-

tions (77) and (78) of the total system are also normalized

if multiplied by V i/n\ .

These relations are clearly illustrated in the simplest

case of n = 2. Corresponding to one particle in state

and the other in state a 2 ,
there is then a doubly degenerate

term with the two characteristic functions

1M1, 2) === [ypaXr1)xpaXr2)+4'^(r2)\pa2(rl )] ,V 2

Wl, 2 )
= ~-- [^a1(rI)^oa (fa)-^aI (f2)^aa (ri)] .

V 2

In the first place it is readily seen that no intercombina-

tions can take place between terms with symmetric and

terms with antisymmetric characteristic functions. The

probability of such a transition is always given by an

integral of the form

J?( 1, 2)^(1, 2)^(1, 2)dr 1dr2 (79)

in which/ (1, 2) is a function which is not altered when the

particles are interchanged, since the two particles are in-

distinguishable. If now the two electrons are interchanged

in (79) the value of the integral is clearly unaltered, since

it is only the designation of the variables of integration

that is changed. On the other hand, the sign of ^«(i, 2)
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is reversed while all other quantities in the integrand re-

main the same. Accordingly (79) must vanish.

A more thorough mathematical investigation based on

the theory of the representation of -groups shows that this

special result must be generalized to the following:
1

The terms of a system of n equal particles may always

be divided into partial systems in such a way that only

the terms belonging to a given partial system can combine

with each other. In particular, there will always occur

two partial systems in one of which the characteristic

functions are symmetric, while in the other they are anti-

symmetric.

This result remains valid for any interaction between

the particles provided only that the interaction of the

particles is a symmetric function of their co-ordinates.

The fact that infercombinations cannot occur between

two different term systems leaves open the possibility of

introducing further hypotheses which exclude all but one

of these systems from physical significance.

Consider, for example, the symmetric term system

alone. A definite distribution of the particles among the

individual states of the single particles (again neglecting

the interaction) corresponds, in this term system, to only

a single characteristic function. The possibilities that are

represented in the symmetric term system therefore cor-

respond to those states which are distinguished in the

Bose-Einstein2
statistics.

In the term system made up of antisymmetric char-

1 E. Wigner, Zeitschnftfur Physik, 40, 883, 1927.

2 S. N. Bose, ibid
, 26, 178, 1924; A. Einstein, Berliner Berichte, p. 261,

1924.
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acteristic functions, on the other hand, any function

which corresponds to two particles in the same state nec-

essarily vanishes. This is the expression in the quantum
theory of the Pauli1 exclusion of equivalent orbits, which

applies to electrons and protons. The choice of an anti-

symmetric term system corresponds to the use of the

Fermi2-Dirac3 statistics.

Quantum statistics thus singles out one term system

from the possible term manifolds of an n-ho&y problem,

of either symmetric or antisymmetric characteristic func-

tions, as the only physically significant one; each term of

the manifold thus singled out represents a distinct state

of the physical system of ^-bodies. The first case cor-

responds to the Bose-Einstein statistics, which applies to

light quanta; the second to the Pauli-Fermi-Dirac sta-

tistics. It is important to remember that this formulation

remains valid for any interaction of the particles.

In applying the Pauli exclusion principle to electrons

or protons it must not be forgotten that rk) in ^a (n,)> repre-

sents not only the three space co-ordinates of the &th

particle, but also the fourth variable describing the spin

which can only have the values and —
The formulation of quantum statistics in the wave

picture will be treated in § xo.

§ 8. THE WAVE CONCEPT TOR MATTER AND
radiation: classical theory

The classical wave theory is that of the de Broglie

waves for matter and of electromagnetic waves for radia-

tion. This section will treat primarily those waves which
1 W. Pauli, Zeitschnft fur Physik, 31, 765, 1925.
2 E. Fermi, ibid., 36, 902, 1926.

3 P. A. M. Dirac, Proceedings of the Royal Society
,
A, 112, 661, 1926.
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are associated with the electron (the proton waves can be

treated in an entirely similar manner), though light waves

will also be considered briefly. No attempt will be made

to include relativistic effects, and it is then logical to treat

only electrostatic forces and to neglect magnetic and re-

tardational phenomena.

The proper wave equation for matter waves was first

discovered by Schrodinger, 1 and is most simply obtained

from the transformation equation (73) of § 5. This gen-

eral Schrodinger equation (73) cannot itself be properly

regarded as a true wave equation, since it is an equation

in 3Y-dimensional co-ordinate space for N particles;

however, for N= 1 this space reduces to ordinary 3-space,

and it is therefore reasonable to try to regard the equation

in this special case as the space-time (i.e., the classical)

equation for matter waves. The transformation function

\p{pcyz) is then to be considered as a “field scalar.”

For one (corpuscular) electron the total Hamiltonian

is made up of the kinetic energy £km = (i/2/x)(^J+^J

-+-pi) and the potential energy Epot = — eV
,
where e and

jjl are the charge and mass of the electron respectively and

V is the electrostatic potential. Hence equation (73) in

this case reduces to

hL
St2

JJL

h d\

p

27n dt
(80)

where V2
is the Laplacian operator (d

2/dx2)+(d2/dy2
)

+ (d
2/dz2). The conjugate complex equation

h2
,

h dt*
o -- V 2t*+eVt*+ a .

=

St jjl 27n dt
(81)

is implicitly contained in equation (80).

1 Annalen der Physik, 79 , 361 (1926).
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The mathematical theory of these equations can be re-

garded as a “classical” theory of matter waves, though

of course in this case the interpretation of the mathe-

matics is essentially different from that of the foregoing

sections. The quantities entering into these equations

can all be visualized in terms of space and time just as

can the quantities in the Maxwell equations, since they

are all functions only of the four variables x, y, z
,

t.

The wave theory does not consider electrons, and e

and /x are merely universal constants of the wave equa-

tion. Although equations (80) and (81) were obtained

from the one-electron problem of the corpuscular theory,

they are now in no manner restricted “to apply to one

electron only,” for the phrase is meaningless ixx the wave

theory. On the contrary they have complete generality

in so far as “waves of negative electricity” are concerned.

From this remark it follows at once that, in contrast to

the quantum theory of the one-electron problem, V no

longer simply represents the potential of the external

forces but also includes the potential of the matter waves

themselves, that is, it takes account of the reaction of one

part of the charge distribution upon another part. This

theory will be as unable to represent the phenomena of

atomic physics as the Maxwell theory. Its value is ex-

clusively heuristic in that it is related to the quantum

theory of waves in the same way that classical mechanics

is related to the quantum theory of particles.

As a first example the case of very small wave ampli-

tude, i.e., very low density of matter, will be treated. It

will assume that the external potential is also zero, so that
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V vanishes to the requisite approximation. Then equa-

tion (80) becomes

2 iri dt
(82)

which possesses the solution

.
(PxX+PyV+PzZ-EO

\[/ = e n

where

E=~(pi+pi+pi)=^p2
-

These have the form of plane waves, the direction of the

wave normal being given by px, pv , pt and the wave-

length and frequency being

(83)

The phase velocity v+ of the waves is

E
P~ 2/t

’

P
(84)

while the group velocity vt can be calculated from ele-

mentary optical principles to be

dK p h
0 dp n Xju

* (85)

According to de Broglie,1 these are the equations which

govern the interference of matter waves for very low

1 L. de Broglie, Annales de Physique, 10 S6rie, 2, 22, 1925; Ondes et

Mouvement
,
Paris, 1926.
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density. The relationship between group velocity and

wave-length permits an association of wave-length to

moving complexes of negative electricity without in any

way appealing to the particle picture. This theory of de

Broglie therefore gives a simple qualitative account of the

experiments of Davisson and Germer, Thomson, Rupp,

and others. This is precisely analogous to the success of

the classical mechanics in explaining the Wilson photo-

graphs, the deflection of cathode rays by electric fields,

etc. Nevertheless one can regard these achievements of

classical theories only as proof of the similarity of the

classical and quantum theories, in the sense of the cor-

respondence principle; for the answer to all quantitative

questions an appeal must be made to the exact quantum

theory.

Before passing on to the quantum theory of waves it

will be necessary to elaborate this classical wave theory

somewhat further. For this purpose' we return to the

wave equation (80) which is not restricted to low density

of matter, and make the following assumptions for the

interpretation of the wave function \f/;

Charge density: p= — ,

ph
Current density: cr= r-

47rifi

Energy density: u

The strict justification of these assumptions can be found

only in the later developments of the quantum theory of

waves. None the less they are plausible at this point be-
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cause the quantities p, <r, and u thus introduced obey by

virtue of equations (80) and (81) the following conserva-

tion laws of the kind which must be demanded of any

classical theory:

Conservation of charge
: ^ Jpdv— o (87a)

Conservation of momentum: j
jadv— —e V\p*\pdv

, (87b)

d d
Conservation of energy: ^Judv—feV ^ (yp*\p)dv . (87c)

In these equations dv is the volume element and the in-

tegrals are over all space. It is assumed that \[/ vanishes

over the infinite sphere so that whenever Green’s theorem

is applied the surface integral vanishes. To deduce (87a)

multiply equation (80) by \f/* and equation (81) by
\f/ }

subtract the two equations thus obtained, integrate over

all space and apply Green’s theorem. To deduce (876)

multiply equation (80) by d\f/*/dx
,
differentiate equation

(81) with respect to x, multiply by 1p, and then subtract

and integrate as before. Finally, (87c) is deduced in the

same manner as (87a) except that the equations are added

instead of subtracted.

Besides the waves of negative electricity other charges

may be present in space, such as atomic nuclei, charged

condensers, etc. The density of these charges will be

designated by p0 . The total electric potential must then

be determined by Poisson’s equation V*E = 47r(p+p0), or

V2F=~47r(p+po) . (88)

For the purpose of the quantum theory of wave fields

to be developed in the next sections it is necessary to note



MATHEMATICAL APPARATUS 163

that equations (80), (81), and (88) can all three be de-

duced from a single variation principle. The proper

Lagrangian function is seen to be

L
h2

8?t
2
h

V\p * . Vi/'— h / dip

47ri\dt

+ eV\p\p*— p0F+
1
VF-VF

(89)

since on varying \p and \p* the condition

JJZ dv dt = Extremum

gives the equations (80) and (81), respectively, and on

varying V gives equation (88).

The total energy of the system is composed of the

energy of the matter waves and that of the electromag-

netic field. Hence the total energy density j/f is given by

the equation

VF-VF, (90)

and the conservation law

H = = Const. (91)

is readily proved, provided p0 is independent of the time.

The proof is as follows: From equations (90), (88), and

(•870)

-/*[£- f
I,

<•«•)]'

= 0 .
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This self-consistent space-time theory, built according

to the model of a classical field theory, does not as yet

contain a single corpuscular element. This is evident

above all from the fact that the total charge of the system

fpdv= —ef (92)

can take on any desired value, and not merely the values

— e, —2e, — 36, ,
as must be required of any true

theory of atomic (or quantized) systems. Furthermore,

the total energy and the characteristic frequencies can

also have any value, since the differential equations are

non-linear and the characteristic frequencies therefore de-

pend on the amplitudes of \p. In spite of these defects

(which are those of any classical theory), the present

theory can be used to account for atomic phenomena in a

manner precisely analogous to that used by Bohr and

Sommerfeld in applying the classical corpuscular theory.

Just as these authors introduced the conditions fpkdqk —

n kh into classical mechanics, so Hartree1 has been able to

give an approximate account of atomic spectra by impos-

ing the “quantum conditions”

JV*1hdv= nk (93)

in the present field theory.2 The quantity nL is an integer,

and the suffix k refers to a characteristic vibration of the

system. Hartree is able to obtain satisfactory results only

1 D. R. Hartree, Proceedings of the Cambridge Philosophical Society
,

24, 89, 1928.

3 Hartree has shown that satisfactory results are obtained only if the

energy of the interaction of the electron with its own field is subtracted

from*the total energy.
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upon neglecting the periodic time-variations in V, which

are produced by the periodic character of \p. This is analo-

gous to the difficulties encountered by the Bohr-Sommer-

feld theory. It is characteristic that this field theory is

quite as difficult to treat mathematically as the classical

mechanics; at any rate it is far more difficult than the

quantum theory of either particles or waves.

It is probably unnecessary to enter into a detailed ac-

count of the classical theory of radiation, since this is the

well-known Maxwell theory. It contains no quantum ele-

ment whatsoever, as witnessed by the fact that the

energy f(E2+H2)dv is continuously variable. Again the

difficulty may be avoided by quantum conditions like

those of Hartree, which make possible only discontinuous

energy changes of amount hv
;
this does not, however, lead

to a quantum theory of the field.

§ 9. QUANTUM THEORY OR WAVE FIELDS 1

The mathematical apparatus necessary for the quan-

tum theory of wave fields may be put in a form complete-

ly analogous to that of the quantum mechanics of par-

ticles provided the classical wave theory is first brought

into a form analogous to the Hamiltonian form of clas-

sical mechanics. The present section treats the general

problem of a classical wave theory that can be derived

from a variation principle. The Lagrangian function of

this variation principle may contain a number of wave

functions ta = 4'a(x, y, z, t), (a = i, 2, 3, . . . . )[e.g., \p*,

and V of § 8], their first order space derivatives (dip*/dxt)

1 P. Jordan and W. Pauli, Zeitschrift fiir Physik
, 47, 151, 1928, W.

Heisenberg and W. Pauli, ibid., 56, 1, 1929; 59, 168, 1930.
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(i = i, 2, 3 for x, y ,
js), and their first-order time derivatives

{d^a/dt)—\pa . The variation principle will then be

dv dt — Extremum, (94)

and the wave equations are the corresponding Eulerian

equations

dL 'sr*' d SL d dL

d\pa dxz

^
/ d\J/a\ dt dfa

\ dx%)

...) (95)

The dassical mechanics of a system of particles may be

derived entirely from Hamilton’s variation principle

fL(qk, qk)dt = Extremum. (96)

The variation principle (94) for a continuous field may be

made formally similar to the variation principle (96) for a

discrete set of particles by introducing the quantity

and then writing (94) in the form

dt = Extremum. (98)

Now while L(qk , qk) depends on the qk for all values of

the index k, L[ipa , J is determined by the values

of 1pa and at all points of space. Hence the analogy

between the two quantities is complete if the points P of
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the space be regarded as the indices of the wavefunction. The
complete wave function may then be regarded as the

complex of quantities d/a(P) dependent on two kinds of

indices: a discrete set a and a continuously variable set

P. (P, of course, takes the place of the three indices

x, y, z.)

The Eulerian equations (95) may now be expressed in

terms of the Lagrangian L, which is the analogue of the

Lagrangian for a system of particles. As the analogue of

the ordinary derivative {d/dqk)L{q x , qt), which may be

written

dL= Lfa+S^Aq, q t)-L(q„ <?,)

dqk as=o Aq

we may define the derivative

sifwn ,

swp
, *.<n] _

bia{P)

lim— {LlMP'j+SaeSiP-P^AMn ,

d%
t

[MP')+S‘i>KP-p’)w(n,Mn]

(99)

The symbol 8(P—P') stands for a function analogous to

Dirac’s 5-function (cf. § 2) having the properties

8(P-P')=o when iVP'
, 1

and

Jd(P—P')<^= 1 or o
,

(100)
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according to whether the volume of integration contains

or does not contain the point P'. From the definition (97)

of L it is readily seen that

8\pa dpa
% o

(101)

Since it is obvious that

SL JSL
8pa d\pa

the Eulerian equations become

8L 8L_

8\f/a dt
(102)

in complete analogy to the Lagrangian equations of clas-

sical mechanics.

The transition from the Lagrangian to the Hamiltonian

form in classical particle mechanics is brought about by

introducing the Hamiltonian

E~^pi4k-L , (103)

k

where pk = dL/dqk; the equations then take the Hamil-

tonian form (1). The same procedure will now be used

for the wave equations (95). A conjugate IIa to the wave

function may be introduced by the relation
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and the Hamiltonian will then be, by analogy to (103),

B=^ ^PUa\(/adv—L . (l05)

Analogously to the relations between L and L,

3=fHdv (106)

if

E=2>«*0
- (107)

The wave equations (95) now take the Hamiltonian form

\pCL—
5H
OTa

na =-
8H
8\//a

*
(108)

Conservation laws may be deduced as in particle me-

chanics. Directly from (108) follows the conservation of

energy,
dH
dt

= 0 (109)

while the equations

lJXu
'l£i

dv=0 tt=I >
2

’ 3) > ( JI°)

expressing the conservation of momentum follow from

(108) and (101), since

d

dt I-SS'
y [ana 5H_,dta 55]

J
dV
2^ [ dxK

5 II. dXi SV'.J
’

C, dH

—J
dv
d^r°-
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In both cases it is assumed that H contains no function of

space and time other than II a ,
ypa ,

and their derivatives.

The transition from classical theory to quantum theory

can now be accomplished without difficulty by analogy

to the procedure of § i. Just as the co-ordinates were

there replaced by matrices, so here the wave functions

may be replaced by non-commutative variables, which

can be represented as matrices in a suitably chosen Hil-

bert space. (Such quantities have been called “j-num-

bers” by Dirac.) To the differential equations (108) must

then be added the exchange relations analogous to (15):

h
na(P)^(P')-^(POna(P)

«

m(p-pO —.

,

27TZ

n^p)u0(P')-mp')u,a(P)=o

,

up)Mn~Mnup)= o

.

In this quantum theory of wave fields the space-time co-

ordinates x, y, z, t are thus parameters (like the time in

the particle theory)
;
they are therefore numbers in the

ordinary sense (called “c-members” by Dirac), and of

course commute with each other and all other quantities.

The conservation laws

H= Const., dv= Const (112)

remain valid, as is readily proved with the help of rela-

tions (iii).

The simplest method for the mathematical treatment

of a wave problem defined by the equations (108) and
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(m) is to develop the wave functions in a suitably

chosen set of orthogonal function u*(P) :

'

=
,

na=^ br(t)ura(P) . ( 1 13)
r r

The ur
a(P) are ordinary ^-numbers and the coefficients ar ,

br must then be regarded as ^-numbers dependent on the

time.

In order that
\f/a and n tt when written in this form shall

obey the exchange relations (in), the a, and br must

satisfy the exchange relations

b^df Ctybs bfg .

27n

dz&r dj-ds === O
j

b&br brbs= o j

which are formally analogous to equations (15). This is

readily proved by substituting the developments (113) in

equation (in), multiplying both sides by us
a(P)u

r

0(P'), in-

tegrating over P and P' and summing over a and
/
3 . In

the integration use must be made of the orthogonality

relations for the ur
a :

dvp2 Ul(P)ut(P) = Sr, .

a

The Hamiltonian H and the equations of motion (108)

may now be expressed in terms of the dr and br . The

methods previously described for solution of a quantum

dynamical problem are then available here—in fact, the
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only difference between the quantum theory of wave

fields and of particles is that in the former the number of

variables is infinite while in the latter it is finite.

§ IO. APPLICATION TO WAVES OF NEGATIVE CHARGE

The method of the last section will now be applied to

the waves of negative charge treated in § 8. The classical

Lagrangian is then

L= -J— VF-VF+efW
8x2

/x 07

r

, PoF_APo
4-Ki\dt

V
dt

V

Corresponding to the division of the charge density into

that of the given external charges (po) and that of the in-

ternal charges (p) the potential V may be written V=
V0+Vz ,

where

V2F0= — 47Tp0 , _
V2Vz= 4Tei*i . (ns)

The foregoing Lagrangian may then be modified to a

more convenient form by adding the total derivatives

and - (i/4tt)V- (FXVF0) and discard-

ing terms involving only the known function p0 . This

does not alter the variation problem, and in the Lagran-

gian

2m dt oir
VFi

+e(F„+Fx)^ (n6)

thus obtained only \p, \
p*, and F, are to be varied.
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A slight difficulty arises because of the fact that the

time derivative of Vx does not occur in (1x6)
,
thus making

it impossible to introduce the exchange relations (hi),

since the conjugate to V x defined by equation (104) would

vanish. The dilemma is easily avoided, however, by not

regarding V x as an independent wave function but rather

treating the equation resulting from the variation of V x as

a secondary condition. With its help Vx may be expressed

as a function of \p and \f/*. Since the equation obtained

by varying Vx is V*VX = 4

V

x is given in terms of

\[/ and \p* by the well-known solution of this equation:

F(P) = -efiG(PP')i*(P')i(P')dvP'
, (117)

where G{PP r

) is the Green’s function (in general, simply

i/Vpp') of the region in which the waves occur. On sub-

stituting this in the Lagrangian (116) the result is, after

a slight modification involving again the addition of total

derivatives,

L=-~ V$* Vi-—.-
87T /X 27TZ dt

dvpnP*(P)i(P)i*(P
,
)i(P

,)G{PPl

) .

(1X8)

The momentum conjugate to i is [cf. eq. (104)]

A
27ri

*
*

and consequently the Hamiltonian is
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giving

V^* • V^-eF„ •A’V

dvPdvP’G(PP')t*

From this classical Hamiltonian form the transition to

quantum theory may be made as in § 9, by introducing

the exchange relations

HP)r(P')-W)KP)=KP-P') >

m'Kn-wwp) = o
, f

(1 *0

o.

The Hamiltonian may again be taken over from the ex-

pression (119) of the classical theory. However, the order

of factors, which is now of importance, is not determined

in this way; in fact, the correct form, in so far as it

involves the order of factors, can only be determined

empirically. It has been found by Jordan and Klein 1 that

the proper Hamiltonian for matter waves is

It should be remarked that the definition of 1p* as the

conjugate of ip requires some modification when ^ is a

^-number. If \p is given as a function of Hermitian ma-

1 P. Jordan and 0 . Klein, Zeitschriftfur Physik, 45, 751, 1927.
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trices, then is obtained from it by replacing i by —i
and also interchanging the order of factors, e.g.,

(pq)*=q*p*.

In this qu'antum theory of matter waves the total

charge

— ejdwp*^

is again a constant in time, as is most readily proved by

showing that it commutes with H. As must also be the

case, its characteristic values are integral multiples of — e.

This may be shown in the following manner. As in § 9, if

we put

a’-u^p) >
>/'*= a *ur^ >

r r

J*‘
U/Hs dv drs j

(l22)

the ar and a* satisfy the exchange relations

&r&8 " ds Cly —~ $rs j

drds ' dsdr 0
j

“

a* a*-afa?= 0 ,

(123)

analogous to equations (114)- The foregoing exchange re-

lations may be satisfied by setting

ar= e h 'Nl ,
a?=Nle h

(124)

provided Nr and 0, are Hermitian operators satisfying

the exchange relations

BrNa
—Na0r= 5r«
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It is then possible to prove that

2X% _ @

e h r
f(Nr)=f(Nr+i)e h r

, (125)

and that the characteristic values of the Nr are positive

integers. It then follows from equation (122) that

e^dv\p*\p— e

^

df dgUj Us

The quantum theory of matter waves thus accounts

for the existence of the electron. At the same time it is

evident that the Hartree “quantum conditions” 93) are

the analogue, in the sense of the correspondence prin-

ciple, of the exchange relations (123). Since 2Nr is a con-

stant of integration of the equations of motion it is pos-

sible to consider separately those stationary states for

which this quantity has the numerical value N. (It may

be remarked that SiVVis a constant even when V0 depends

on the time.) It has been shown by Jordan and Klein (cf

.

In) 1 that the solutions of the wave problem with Ham-

iltonian (119) for which this condition is fulfilled are

mathematically and physically equivalent to the solutions

of the iV-electron problem of the corpuscular theory, i.e.,

to the solutions of the Schrodinger equation (47). How-

ever, they do not correspond to all the solutions of this

equation but only to those of the possible solutions in

which the transformation function is symmetric in the

'Ibid.
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co-ordinates of the electrons. These solutions themselves

form a closed term system, namely, that one for which

the Bose-Einstein statistics is valid. The quantum theory

of matter waves [especially the exchange relations (m)]
thus requires the Bose-Einstein statistics for the cor-

responding particle picture.

The exchange relations (in) are, however, only one

possibility out of many. Another equally justifiable set is

obtained by changing the minus sign into a plus sign, so

that the wave functions satisfy the equations

HP)^P')+HP')^P)- o, (126)

t*(P)f*(P')+^*(P')yP*(P)=0 .

According to Jordan and Wigner, 1 the quantum theory of

waves based on these exchange relations is equivalent to

the antisymmetric solutions of the Schrodinger equation;

that is, these relations lead to the Pauli exclusion prin-

ciple and the corresponding Fermi-Dirac statistics.

§ II. PROOF OF THE MATHEMATICAL EQUIVALENCE
OF THE QUANTUM THEORY OF PARTICLES

AND OF WAVES

The problem of quantum theory centers on the fact

that the particle picture and the wave picture are merely

two different aspects of one and the same physical reality.

Although this is a problem of purely physical nature it is

satisfying to find a counterpart to this duality in the

1 P. Jordan and E. Wigner, Zeitschrijt fur Physik, 47, 631, 1928.
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mathematical apparatus of the theory. The analogy con-

sists in the fact that one and the same set of mathematical

equations can be interpreted at will in terms of either

picture.

The proof of this assertion may be made perfectly gen-

eral without regard to the particular form of Hamiltonian

considered. The Schrodinger equation of the particle pic-

ture for N equivalent particles may be written

20-+2 0“+ " + ia,
n = i n>m

where On
is an operator acting only on the space co-

ordinates xn of the wth particle, and 0nm one acting on the

co-ordinates of both the wth and mth. Furthermore, it

may be assumed that a certain system of orthogonal func-

tions Ur(x) has been found, in terms of which all functions

in 3-space satisfying the boundary conditions can be ex-

panded
;
it will then be possible to expand <p(x x ,

. . ,
xN)

in terms of products of these functions:

• • , *a0 = b(rz ,
. . ,rN,

t)uT,{Xi) UrJxN) . (128)

rx rN

The quantities |J(rx . ... rN,
t)\

2 maybe regarded as de-

termining the probability that the particle 1 is in the Te-

state, particle 2 in the restate, etc. If this expression for

<p be substituted in equation (127), the result multiplied

by #„(*>„(*,) • • • • us„{xN) and then integrated over

L(xi, .
. ,

xjv)=o (127)
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x t ,
x2 ,

....
, x.v there results the following differential

equation for the b’s:

_ h d , ,

°"
27Ti a]

i(Sl
’
s,> • • ’ ^ }

+ ^ ^ (Si . frn • Sjf)

n Tm

+ . . r„ . . rm . . Sn)+ • • .

n> wz r»rn»

W129)

Use has here been made of the orthogonality relations

for the ur(x) and the quantities

^s»rn ^ f)
'M&

r
On

'Urn
d,,Vn 3

0s™m ; rnrm ^ J"
j'%

SnUSmOnmUrnUrmdvndvm ,

are the elements of the matrices representing the cor-

responding operators in the co-ordinate system character-

ized by the functions «r(x). Because of the symmetry of

the Hamiltonian in the co-ordinates of the particles, the

numerical values of the matrix elements depend only on

the indices r and s, and not explicitly on n and m . In the

case of the Bose-Einstein statistics the b(sx ....$#) are

symmetric in the quantum numbers of the particles, so

that they can also be expressed as functions of the num-

berNr of particles in the rth state. Since the a priori prob-

ability of finding N t particles in the first state, N2 in the

second, etc., is then given by Z2 = Nl/(Nl lN2 \ ....), it

is convenient to define the quantity

b(Nlf Na )=Zb(r1} fa, ,
rN). (130)



i8o PRINCIPLES OF QUANTUM THEORY

The operators e
h r

of equation (125) which change Nr

to Nr+i are useful here; with their aid equation (129)

may be written

°=f-,|+yy3o„
I 2 TTl Ot

s,r

2
-r- (0e+©s'

—

©r
—

©r')

N.(.N*- 6U')0*. r,e
h

ss'

,

r/

+ ....)•

On multiplying this equation from the left by Z and

commuting i/Z to the left equation (125) yields

~P (
e«_9r)

>«(—
.
|.+ V^(Y,-5r.+ i)*CU h

[ 27n dt
s,r

+f2
ss'; rr'

x 1 (0.+0s
/-0r-©r/) \

5rv) *
^ J

• b(Nx ,

(131)

We turn now to the corresponding problem expressed

in the wave theory; the Hamiltonian corresponding to

(127) is then

8 dvp\ppOp\pp'+ ^fjdvpdvjp'\pp'4/p0p,p
4/p,4/p+ * * * * *

By (122) this may also be written

dfdr0^r~\~"2 ^ ds d§'drdr'0s8
r
f rr

f ~\~ * * * * .
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Then on substituting equations (124) in the equation

HS+--.^= o,
21ri dt

we obtain

.JJl* - (0s“@r)^\ n a . 'c—a !

o==
{^idt+XN°°”eh

s,r

.. 2ri 2iri . 27r£

+i ]T A Oss
-

:

h r
Nle *

e/
iV;

+
}
5 (iV*.

Commutation of the operators e
h to the right gives

5= (AsrfJVj(iV,-««.+i)*0.
t 27TZ

ss'; rr'

/A7 ,
, s * * X* T (

efi+0s,_er“0r') 1

5

.
(iV/ “f“ I T" ^rr

r <5/8 <5rV) £ J

(l3 2 )

This equation is identical with equation (13 1), and the

mathematical equivalence of the particle and wave pic-

tures has therefore been proved. A similar proof may be

given in the case of the Pauli exclusion principle and the

exchange relations (126).

Although the classical theories of the corpuscular and

wave pictures are so entirely different, both physically

and mathematically, the quantum theories of the two are

identical.
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§ 12. APPLICATION TO THE THEORY OP RADIATION1

It will be recalled that the Maxwell equations, which

govern the classical wave theory of radiation, can be de-

rived by variation of the potentials in the Lagrangian

4

L =
1

(E2~H2
)+ $aSa .

a = I

The sa (jx = i, 2, 3, 4) are the components of the 4-current

density, the <£a the 4-potentials (<£4 = i<£0 ,
x4= id) ; hence

the Lagrangian becomes, when written explicitly in terms

of the potentials,

87r|^--/\c dt dx l ) dx l )
1 i>k

(l33)

(In this and the following equations Latin indices run

from 1 to 3, Greek indices from 1 to 4.)

The momentum conjugate to is, by (104),

IL=
dL_

d$i

1 /r d&x d$o\ _ 1

47rc\c dt dxi) 47rc
(134)

Since the Bose-Einstein statistics applies to light quanta,

the proper exchange relations are

E.(P)$.(P0 -S.0P7E.CP) - - 2hci 8{P-P t

)8 l « ,

1 W. Heisenberg and W. Pauli, Zeitschrift fur Physik, 56, 1, 1929.
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which give on differentiating

E^P)Ek{P')-Ek{P')El{P) = o
,

H%(P)Hk(P')-Hk(P')H>(P) = o ,

E%(P)HdP') —Hk(P')Hi(P) = - 2hci "

where i, j, k is any cyclic permutation of i, 2, 3.

A difficulty arises from the circumstance that i0 does

not occur in the Lagrangian; this affects, however, only

the exchange relations between potentials and field com-

ponents, and not the exchange relations (135).

If the <$»a be developed in a set of suitably chosen

orthogonal functions (e.g., standing waves in an in-

closure), then the energy content of a vibration of fre-

quency v becomes an integral multiple of hv. Dirac1 has

shown that this makes it possible to consider the number

of light quanta in each state as the variables of the sys-

tem; this constitutes the link with the particle picture.

1 Proceedings of the Royal Society
,
A, 114, 710, 1927.
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